CENTRAL UNIVERSITY OF HARYANA

(Established under the Central Universities Act, 2009) (NAAC Accredited 'A' Grade)

Curriculum and Syllabi of Integrated B.Sc.-M.Sc. (Physics)

Session: 2023-28

DEPARTMENT OF PHYSICS & ASTROPHYSICS SCHOOL OF BASIC SCIENCES

Approved by:Approval Status :Approval Date:

BOS Approved 05.07.2023 School Board Approved 18.07.2023

Academic Council

Table of Contents

Sr. No.	Contents	Page No.
	Vision and Mission	3
1	Background	
	i) NEP-2020 and LOCF: An Integrated Approach	4
	ii) About the Subject	6
	iii) About the Programme (Nature, Extent, and Aims)	6
	iv) Qualification Descriptors (Possible Career Pathways)	7
2	Programme Outcomes (POs)	8
3	Programme Specific Outcomes (PSOs)	9
4	Postgraduate Attributes	10
5	Structure of Course	11
6	Learning Outcome Index (Mapping of Courses with POs and PSOs)	12
7	Semester-wise Courses and Credit Distribution	15
8	Teaching-Learning Process	235
9	Implementation of Blended Learning	235
10	Assessment and Evaluation	236
11	Keywords	236
12	References	237

VISION AND MISSION

Vision and Mission of the University

Vision

To develop enlightened citizenship of a knowledge society for peace and prosperity of individuals, nation and the world, through the promotion of innovation, creative endeavors, and scholarly inquiry.

Mission

To serve as a beacon of change, through multi-disciplinary learning, for the creation of a knowledge community, by building a strong character and nurturing value-based transparent work ethics, promoting creative and critical thinking for holistic development and self-sustenance for the people of India. The University seeks to achieve this objective by cultivating an environment of excellence in teaching, research, and innovation in pure and applied areas of learning.

Vision and Mission of the Department of Physics and Astrophysics

Vision

To establish a platform for the dissemination and creation of knowledge through teaching and research in Physics and Astrophysics at various levels. To help create a scientific society that encourages logical thinking.

Mission

- To offer a state of art Academic Programs in Physics and interdisciplinary areas.
- To create an intellectual property through innovations, quality research publications, and patents
- To create state of art research laboratories that will facilitate the research of the Central University of Haryana as well as other academic institutions.

1. Background

i. NEP-2020 and LOCF an integrated Approach

Considering the curricular reforms as instrumental for desired learning outcomes, all the academic departments of the Central University of Haryana made a rigorous attempt to revise the curriculum of undergraduate and postgraduate programs in alignment with the National Education Policy-2020 and UGC Quality Mandate for Higher Education Institutions-2021. The process of revising the curriculum could be prompted by the adoption of the "Comprehensive Roadmap for Implementation of NEP-2020" in the 32nd meeting of the Academic Council of the University held on April 23, 2021. The Roadmap identified the key features of the Policy and elucidated the Action Plan with well-defined responsibilities and an indicative timeline for major academic reforms.

The process of revamping the curriculum started with a series of webinars and discussions conducted by the University to orient the teachers about the key features of the Policy, enabling them to revise the curriculum in sync with the Policy. Proper orientation of the faculty about the vision and provisions of NEP-2020 made it easier for them to appreciate and incorporate the vital aspects of the Policy in the revised curriculum focused on 'creating holistic, thoughtful, creative and well-rounded individuals equipped with the key 21st-century skills for the 'development of an enlightened, socially conscious, knowledgeable, and skilled nation'.

With NEP-2020 in background, the revised curricula articulate the spirit of the policy by emphasising upon integrated approach to learning; innovative pedagogies and assessment strategies; multidisciplinary and crossdisciplinary education; creative and critical thinking; ethical and Constitutional values through value-based courses; 21st century capabilities across the range of disciplines through life skills, entrepreneurial and professional skills; community and constructive public engagement; social, moral and environmental awareness; Organic Living and Global Citizenship Education (GCED); holistic, inquiry-based, discoverybased, discussion-based, and analysis-based learning; exposure to Indian knowledge system, cultural traditions and classical literature through relevant courses offering 'Knowledge of India'; fine blend of modern pedagogies with indigenous and traditional ways of learning; flexibility in course choices; student-centric participatory learning; imaginative and flexible curricular structures to enable creative combination of disciplines for study; offering multiple entry and exit points initially in undergraduate programmes; alignment of Vocational courses with the International Standard Classification of Occupations maintained by the International Labour Organization; breaking the silos of disciplines; integration of extra-curricular and curricular aspects; exploring internships with local industry, businesses, artists and crafts persons; closer collaborations between industry and higher education institutions for technical, vocational and science programmes; and formative assessmenttools to be aligned with the learning outcomes, capabilities, and dispositions as specified for each course. In the case of UG programs in Engineering and Vocational Studies, it was decided that the departments shall incorporate pertinent NEP recommendations while complying with AICTE, NBA, NSQF, International Standard Classification of Occupations, Sector Skill Council, and other relevant agencies/sources. The University has also developed a consensus on the adoption of Blended Learning with 40% component of onlineteaching and 60% face-to-face classes for each program.

The revised curricula of various programs could be devised with concerted efforts of the faculty, Heads of the Departments, and the Deans of Schools of Study. The draft prepared by each department was discussed in a series of discussion sessions conducted at the Department, School, and University levels. The leadership of the University has been a driving force behind the entire exercise of developing the uniform template and structure for the revised curriculum. The Vice-Chancellor of the University conducted a series of meetings with Heads and Deans to deliberate upon the vital parameters of the revised curriculum to formulate a uniform template featuring Background, Programme Outcomes, Programme Specific Outcomes, Postgraduate and Graduate Attributes, Structure of Masters Course, Learning Outcome Index, Semester-wise Courses and Credit Distribution, Course-level Learning Outcomes, Teaching-Learning Process, Blended Learning, Assessment and Evaluation, Keywords, References, and Appendices. The experts of various Boards of Studies and School Boards contributed to a large extent in giving the final shape to the revised curriculum of each program.

To ensure the implementation of curricular reforms envisioned in NEP-2020, the University has decided to implement various provisions in a phased manner. Accordingly, the curriculum may be reviewed annually.

ii. About the Subject

Physics is the natural science that studies matter, its motion and behavior through space and time, and the related entities of energy and force. Physics is one of the most fundamental scientific disciplines and its main goal is to understand the behavior of the universe and its characteristics.

Physics uses the scientific method to help uncover the basic principles governing light and matter, and to discover the implications of those laws. It assumes that there are rules by which the universe functions, and that those laws can be at least partially understood by humans. It is also commonly believed that those laws could be used to predict everything about the universe's future if complete information was available about the present state of all light and matter.

With the inclusion of Astronomy, Physics became one of the oldest academic disciplines. Physics intersects with many interdisciplinary areas of research. New ideas in physics often explain the fundamental mechanisms studied by other branches of science and suggest new avenues of research in academic disciplines such as mathematics, etc. Advancement in Physics often leads to new technologies.

iii. About the Programme (Nature, extent, and aims)

Integrated B.Sc.-M.Sc. (Physics) is a five-year regular program. There are ten semesters in this program. The duration of each semester is sixteen weeks. Teaching and learning process of Integrated B.Sc.-M.Sc. (Physics) involves theory and practical classes along with seminar presentations and research project work.

The curriculum will be taught through formal lectures with the aid of power-point presentations, audio and video tools, and other teaching aids that can be used as and when required. Emphasis will be given to laboratory work and visiting National laboratories to give hands-on experience to students. Students will be encouraged to do semester-long projects in their own institutes as well as in reputed institutes at the National level. The aims of the Programme are as follows:

- Understand the underlying Physics in respective specializations, and, be able to teach and guide successfully
- Introduce advanced ideas and techniques that are applicable in respective fields.
- Provide the students with a broad spectrum of Physics Courses
- Emphasize the role of Physics in other disciplines such as (Chemical Sciences, Mathematical Sciences, Life Sciences, and their applied areas)
- Develop the ability of the students to observe, perform, analyze and report an experiment
- Develop the ability of the students to deal with physical models and formulas mathematically
- Equip the students with different practical, intellectual and transferable skills.
- Strengthen the student's knowledge of physics and its applications in the real world.

- Provide the student with mathematical and computational tools and models to be used in solving professional problems
- Improve the inter-disciplinary skills of the students.
- To develop human resources with a solid foundation in theoretical and experimental aspects of respective specializations as a preparation for a career in academia and industry.

iv. Qualification Descriptors (possible career pathways)

Upon successful completion of the course, the students receive a degree/diploma/certificate based on the credits acquired. The students will have an option to choose different paths seeking a sphere of knowledge and domain of professional work that can fulfill their dreams. The students will be able to demonstrate their knowledge in advanced branches of Physics. This will establish a platform over which students can pursue higher studies. The possible career paths are:

- Teaching Assignments
- Scientific Assignments
- Instruments development
- Research and Development in Industries
- Simulation Techniques Development in Science
- Role in Renewable Energy Resources
- University/Institute Administrative Assignments
- Technician in Lasers, Accelerators, Detectors, and Electronics
- Astronomer
- Medical Device Designer
- Radiologist

2. Programme Outcomes (POs)

Students enrolled in the Integrated B.Sc.-M.Sc. (Physics) offered by the Department of Physics and Astrophysics under the School of Basic Sciences will have the opportunity to learn and master the following components in addition to attaining important essential skills and abilities:

PO-No.	Component	Outcomes
PO-1	Basic Knowledge	Capable of delivering basic disciplinary knowledge gained
		during the program.
PO-2	In-depth Knowledge	Capable of describing advanced knowledge gained during
		the program.
PO-3	Critical thinking and	Capable of analyzing the results critically and applying
	Problem-Solving	acquired knowledge to solve the problems.
	abilities	
PO-4	Creativity and	Capable to identify, formulate, investigate, and analyze
	innovation	scientific problems and innovatively designing and creating
		products and solutions to real-life problems.
PO-5	Research aptitude and	Ability to develop a research aptitude and apply knowledge
	global competency	to find the solution to burning research problems in the
		concerned and associated fields at the global level.
PO-6	Holistic and	Ability to gain knowledge with the holistic and
	multidisciplinary	multidisciplinary approach across the fields.
	education	
PO-7	Skills enhancement	Learn specific sets of disciplinary or multidisciplinary skills
		and advanced techniques and apply them for the betterment
		of mankind.
PO-8	Leadership and	Ability to learn and work in groups and capable of leading a
	Teamwork abilities	team even.
PO-9	Environmental and	Learn important aspects associated with environmental and
	human health	human health. Ability to develop eco-friendly technologies.
	awareness	
PO-10	Ethical thinking and	Inculcate the professional and ethical attitude and ability to
	Social awareness	relate to social problems.
PO-11	lifelong learning	Ability to learn lifelong learning skills which are important
	skills and	to provide better opportunities and improve quality of life.
	Entrepreneurship	Capable to establish an independent startup/innovation
		center etc.

3. PROGRAMME SPECIFIC OUTCOMES (PSOs)

The students shall be able to realize the following specific outcomes by the end of program studies:

Number	Programme Specific Outcomes
PSO-1	Identify, formulate, and solve Physics problems
PSO-2	Design and conduct experiments, as well as analyze and interpret data
PSO-3	Apply knowledge of Physics in a different stream of science and to communicate effectively.
PSO-4	Ability to use the techniques, skills, and modern physical tools in a real-world application.
PSO-5	Engage in life-long learning and will have recognition.

4. Graduate Attributes

Some of the characteristic attributes of a graduate in Physics are:

- Disciplinary knowledge and skills: Capable of demonstrating
 - a. good knowledge and understanding of major concepts, theoretical principles and experimental findings in Physics and its different subfields like Astrophysics and Cosmology, Material science, Nuclear and Particle Physics, Condensed matter Physics, Atomic and MolecularPhysics, Mathematical Physics, Analytical dynamics, Space science and other related fields of study, including broader interdisciplinary subfields like Chemistry, Mathematics, Life sciences, Environmental sciences, Atmospheric Physics, Computer science, Information Technology, etc.
 - b. ability to use modern instrumentation and laboratory techniques to design and perform experiments is highly desirable in almost all the fields of Physics listed above in (a).
- **Skilled communicator:** Ability to transmit complex technical information relating to all areas in Physics in a clear and concise manner in writing and oral ability to present complex and technical concepts in a simple language for better understanding.
- **Critical thinker and problem solver:** Ability to employ critical thinking and efficient problem-solving skills in all the basic areas of Physics.
- Sense of inquiry: Capability for asking relevant/appropriate questions relating to the issues and problems in the field of Physics, and planning, executing, and reporting the results of a theoretical or experimental investigation.
- **Team player/worker:** Capable of working effectively in diverse teams in both classroom, laboratory, Physics workshop, and in industry and field-based situations.
- **Skilled project manager:** Capable of identifying/mobilizing appropriate resources required for a project, and managing a project through to completion, while observing responsible and ethical scientific conduct; and safety and laboratory hygiene regulations and practices.
- **Digitally Efficient:** Capable of using computers for simulation studies in Physics and computation and appropriate software for numerical and statistical analysis of data, and employing modern e-library search tools like Inflibnet, various websites of the renowned Physics labs in countries like the USA, Europe, Japan, etc. to locate, retrieve, and evaluate Physics information.
- Ethical awareness/reasoning: The graduate should be capable of demonstrating the ability to think and analyze rationally with a modern and scientific outlook and identify ethical issues related to one's work,

avoid unethical behavior such as fabrication, falsification or misrepresentation of data or committing plagiarism, not adhering to intellectual property rights, and adopting objectives, unbiased and truthful actions in all aspects of work.

- National and international perspective: The graduates should be able to develop a national as well as international perspective for their career in the chosen field of the academic activities. They should prepare themselves during their most formative years for their appropriate role in contributing toward the national development and projecting our national priorities at the international level pertaining to their field of interest and future expertise.
- Lifelong learners: Capable of self-paced and self-directed learning aimed at personal development and for improving knowledge/skill development and reskilling in all areas of Physics.

5. Structure of Integrated B.Sc.-M.Sc. Course

Semester	Core Courses (CC) each with 06 credits (All courses are compulsory)	Generic Elective (GE) each with 06 credits (to be opted from given list of courses)	Skill Enhancement Course (SEC) each with 02 credits (to be opted from given list of courses)	Discipline Specific Elective (DSE) each with 06/04 credits (to be opted from given list of courses)	Ability Enhancement Compulsory Courses (AECC) (to be opted from given list of courses)	Total Credits
Ι	CC-01 CC-02	GE-01			AECC-01	22
II	CC-03 CC-04	GE-02			AECC-02	22
III	CC-05 CC-06 CC-07	GE-03	SEC-01			26
IV	CC-08 CC-09 CC-10	GE-04	SEC-02			26
V	CC-11 CC-12		SEC-03	DSE-01 DSE-02		26
VI	CC-13 CC-14		SEC-04	DSE-03 DSE-04		26
VII	CC-15* CC-16* CC-17* CC-18	GE-05*		DSE-05*		26
VIII	CC-19* CC-20* CC-21* CC-22			DSE-06* DSE-07*		26
IX	CC-23* CC-24* CC-25 CC-26			DSE-08* DSE-09*		28
X	CC-27**					20
		TOTAI	CREDITS		1	248

Total Credits of the Course: 248

Types of Courses	Nature	Total Credits	%
Compulsory	Core Courses (CC)	160	64.5%
Courses	Ability Enhancement Compulsory Courses (AECC)	08	3.2%
Elective Courses	Discipline Specific Elective Courses (DSE)	44	17.8%
	Generic Elective Courses (GE)	28	11.3%
	Skill Enhancement Courses Elective Courses (SEC)	08	3.2%

Exit Options: As per appropriate ordinance

6. Learning Outcome Index

Core Cou	se for B.Sc	(Hons.)
----------	-------------	---------

S.		CC-	CC-	CC-	CC-	CC-	CC-	CC-							
No.		I I	п	ш	IV	v	VI	VII	VIII	IX	x	XI	XII	XIII	XIV
1	Fundamental understanding of the	x	X	X	x	x	X	X	X	X	x	X	X	X	X
	field														
2	Application of basic Physics concepts	x	х	x	x	х	х	х	х	x	x	х	x	x	х
3	Linkages with related disciplines	x	х	x	x	х	x	x	x	x	х	х	х	x	х
4	Procedural knowledge for professional subjects	x	х	х	х	х	х	х	х	X	x	x	x	x	х
5	Skills in related field of specialization	x	x	x	x	х	x	x	x	x	х	х	x	x	х
6	Ability to use in Physics problem	x	x	x	x	х	x	x	x	x	x	x	x	x	х
7	Skills in Mathematical modeling	x	x	x	x	х	-	-	x	-	-	x	x	x	х
8	Skills in performing analysis and interpretation of data	x	х	х	x	х	х	х	x	x	x	x	x	x	х
9	Develop investigative Skills	x	х	x	x	х	х	х	x	-	x	X	x	x	х
10	Skills in problem solving in Physics and related discipline	x	х	х	x	х	х	х	x	x	x	x	X	x	х
11	Develop Technical Communication skills	x	х	x	x	-	-	х	x	x	x	x	x	x	х
12	Developing analytical skills and popular communication	x	х	x	x	-	-	-	-	x	-	-	x	x	х
13	Developing ICT skills	x	х	x	x	х	x	х	x	-	x	x	x	x	х
14	Demonstrate Professional behaviour with respect to attribute like objectivity, ethical values, self reading, etc	x	x	x	x	x	x	x	x	x	x	x	x	x	x

7. Semester-wise Courses & Credit Distribution

Scheme and Syllabus of Integrated B.Sc. M.Sc. (Physics) (CHOICE BASED CREDIT SYSTEM)

Semester I

Total credits: 26

S. No.	Course Title	Course Code	L	Т	Р	Credits
1	Mathematical Physics-I	SBS PHY 03 101 CC 3104	3	1	0	4
2	Mechanics	SBS PHY 03 102 CC 3104	3	1	0	4
3	Ability Enhancement Compulsory Course (AECC-01)		3	1	0	4
4	Skill Enhancement Course (SEC-01)		2/3	1/0	2/0	4
5	Generic Elective Course (GE-01)		4/5	0/1	4/0	6
6	Physics Laboratory-I	SBS PHY 03 103 CC 0042	0	0	4	2
7	Introduction to Computer Programming	SBS PHY 03 104 CC 0042	0	0	4	2

• The GE courses offered by the Department of Physics and Astrophysics can only be taken by the students of the other Departments. The students of Integrated B.Sc. M.Sc. (Physics) programme will opt the GE courses offered by other departments of the University based on the following disciplines:

1. Mathematics 2. Chemistry 3. Computer Science or any other discipline of importance

- The AECC course of "Environmental Studies [SBS EVS 0107 AECC 3104]" will be offered in one of the first two semesters as a compulsory course and the student will opt for a course based on Modern Indian Language (MIL) communications in the other semester:
 - English Communications [SBS ENG 0207 AECC 3104]
 - प्राचीनभारतीयसंस्कृतिः, दर्शनं भाषाविज्ञानं च (1) [SBS SKT 0209 AECC 3104]
 - हिंदी भाषा: रचना एवं व्यवहार [SBS HIN 0208 AECC 3104]
- The Department offers Skill-Enhancement Elective (SEC) courses depending on the specialization and strength of faculty members, and the number of students. If class strength is less than 10, then that particular subject will not be offered.

SEC-01

- Physics Workshop Skills [SBS PHY 03 101 SE 2124]
- Renewable Energy and Energy Harvesting [SBS PHY 03 102 SE 3104]
- Basic Instrumentation Skills [SBS PHY 03 103 SE 2124]
- Weather Forecasting [SBS PHY 03 104 SE 3104]

.....

Semester II

Total credits: 26

S. No.	Course Title	Course Code	L	Т	Р	Credits
1	Electricity and Magnetism	SBS PHY 03 201 CC 3104	3	1	0	4
2	Waves and Optics	SBS PHY 03 202 CC 3104	3	1	0	4
3	Ability Enhancement Compulsory Course (AECC-02)		3	1	0	4
4	Skill Enhancement Course (SEC-02)		2/3	1/0	2/0	4
5	Generic Elective Course (GE-02)		4/5	0/1	4/0	6
6	Physics Laboratory-II	SBS PHY 03 203 CC 0084	0	0	8	4

- The GE courses offered by the Department of Physics and Astrophysics can only be taken by the students of the other Departments. The students of Integrated B.Sc. M.Sc. (Physics) programme will opt the GE courses offered by other departments of the University based on the following disciplines:
 - 2. Mathematics 2. Chemistry 3. Computer Science or any other discipline of importance
- The AECC course of "Environmental Studies [SBS EVS 0107 AECC 3104]" will be offered in one of the first two semesters as a compulsory course and the student will opt for a course based on Modern Indian Language (MIL) communications in the other semester:
 - English Communications [SBS ENG 0207 AECC 3104]
 - प्राचीनभारतीयसंस्कृतिः, दर्शनं भाषाविज्ञानं च (1) [SBS SKT 0209 AECC 3104]
 - हिंदी भाषा: रचना एवं व्यवहार [SBS HIN 0208 AECC 3104]
- The Department offers Skill-Enhancement Elective (SEC) courses depending on the specialization and strength of faculty members, and the number of students. If class strength is less than 10, then that particular subject will not be offered.

SEC-02

- Computational Physics Skills [SBS PHY 03 201 SE 2124]
- Applied Optics [SBS PHY 03 202 SE 2124]
- Electrical Circuit and Network Skills [SBS PHY 03 203 SE 2124]
- Radiation Safety [SBS PHY 03 204 SE 3104]

.....

Semester III

Total credits: 24

S. No.	Course Title	Course Code	L	Т	Р	Credits
1	Mathematical Physics–II	SBS PHY 03 301 CC 3104	3	1	0	4
2	Thermal Physics	SBS PHY 03 302 CC 3104	3	1	0	4
3	Analog Systems and Applications	SBS PHY 03 303 CC 3104	3	1	0	4
4	Physics Laboratory-III	SBS PHY 03 304 CC 00126	0	0	12	6
5	Generic Elective Course (GE-03)		4/5	0/1	4/0	6

Note:

- The GE courses offered by the Department of Physics and Astrophysics can only be taken by the students of the other Departments. The students of Integrated B.Sc. M.Sc. (Physics) programme will opt the GE courses offered by other departments of the University based on the following disciplines:
 - 1. Mathematics 2. Chemistry 3. Computer Science or any other discipline of importance
- The Department offers Skill-Enhancement Elective (SEC) courses depending on the specialization and strength of faculty members, and the number of students. If class strength is less than 10, then that particular subject will not be offered.

Semester IV

Total credits: 24

S. No.	Course Title	Course Code	L	Т	Р	Credits
1	Mathematical Physics-III	SBS PHY 03 401 CC 3104	3	1	0	4
2	Elements of Modern Physics	SBS PHY 03 402 CC 3104	3	1	0	4
3	Digital Systems and Applications	SBS PHY 03 403 CC 3104	3	1	0	4
4	Physics Laboratory-IV	SBS PHY 03 404 CC 00126	0	0	12	6
5	Generic Elective Course (GE-04)		4/5	0/1	4/0	6

Note:

- The GE courses offered by the Department of Physics and Astrophysics can only be taken by the students of the other Departments. The students of Integrated B.Sc. M.Sc. (Physics) programme will opt the GE courses offered by other departments of the University based on the following disciplines:
 - 1. Mathematics 2. Chemistry 3. Computer Science or any other discipline of importance
- The Department offers Skill-Enhancement Elective (SEC) courses depending on the specialization and strength of faculty members, and the number of students. If class strength is less than 10, then that particular subject will not be offered.

.....

Semester V

Total credits: 24

S. No.	Course Title	Course Code	L	Т	Р	Credits
1	Quantum Mechanics and Applications	SBS PHY 03 501 CC 3104	3	1	0	4
2	Solid State Physics	SBS PHY 03 502 CC 3104	3	1	0	4
3	Physics Laboratory-V	SBS PHY 03 503 CC 0084	0	0	8	4
4	Discipline Specific Elective Course (DSE-01)		4/5	0/1	4/0	6
5	Discipline Specific Elective Course (DSE-02)		4/5	0/1	4/0	6

Note: The Department offers discipline-specific elective (DSE) courses depending on the specialization and strength of faculty members, and the number of students. If class strength is less than 10, then that particular subject will not be offered.

DSE-01

- 1. Experimental Techniques [SBS PHY 03 501 DS 5106]
- 2. Biophysics [SBS PHY 03 502 DS 5106]
- 3. Earth Sciences [SBS PHY 03 503 DS 5106]

- 1. Nuclear and Particle Physics [SBS PHY 03 504 DS 5106]
- 2. Atmospheric Physics [SBS PHY 03 505DS 5106]
- 3. Physics of Devices and Instrumentation [SBS PHY 03 506 DS 5106]

.....

Semester VI

Total credits: 24

S. No.	Course Title	Course Code	L	Т	Р	Credits
1	Electromagnetic Theory	SBS PHY 03 601 CC 3104	3	1	0	4
2	Statistical Mechanics-I	SBS PHY 03 602 CC 3104	3	1	0	4
3	Physics Laboratory-VI	SBS PHY 03 603 CC 0084	0	0	8	4
4	Discipline Specific Elective Course (DSE-03)		4/5	0/1	4/0	6
5	Discipline Specific Elective Course (DSE-04)		4/5	0/1	4/0	6

Note: The Department offers discipline-specific elective (DSE) courses depending on the specialization and strength of faculty members, and the number of students. If class strength is less than 10, then that particular subject will not be offered.

DSE-03

- 1. Nanomaterials and Applications [SBS PHY 03 601 DS 5106]
- 2. Medical Physics [SBS PHY 03 602 DS 5106]
- 3. Computational Methods in Physics: Theory [SBS PHY 03 603 DS 4004] + Laboratory [SBS PHY 03 604 DS 0042]

- 1. Astronomy and Astrophysics [SBS PHY 03 605 DS 5106]
- 2. Embedded systems- Introduction to Microcontroller [SBS PHY 03 606 DS 5106]

Semester VII

Total credits: 26

S. No.	Course Title	Course Code	L	Т	Р	Credits
1	Classical Mechanics	SBS PHY 03 701 CC 3104	3	1	0	4
2	Advanced Mathematical Physics	SBS PHY 03 702 CC 3104	3	1	0	4
3	Advanced Quantum Mechanics	SBS PHY 03 703 CC 3104	3	1	0	4
4	Physics Laboratory-VII	SBS PHY 03 704 CC 00126	0	0	12	6
5	Discipline Specific Elective Course (DSE-05)		3	1	0	4
6	Generic Elective Course (GE-05)		3	1	0	4

Note:

1. The Department offers discipline-specific elective (DSE) courses and Skill-Enhancement Elective (SEC) courses depending on the specialization and strength of faculty members, and the number of students. If class strength is less than 10, then that particular subject will not be offered.

- 1. Statistical Mechanics-II [SBS PHY 03 701 DS 3104]
- 2. Introduction to Hydrogen Energy Systems [SBS PHY 03 702 DS 3104]
- 3. Astrophysics of Stars [SBS PHY 03 703 DS 3104]
- 2. The students of Integrated B.Sc. M.Sc. (Physics) programme will opt the GE course (GE-05) offered by other departments of the University

Semester VIII

Total credits: 26

S. No.	Course Title	Course Code	L	Т	Р	Credits
1	Classical Electrodynamics	SBS PHY 03 801 CC 3104	3	1	0	4
2	Atomic and Molecular Physics	SBS PHY 03 802 CC 3104	3	1	0	4
3	Nuclear Physics	SBS PHY 03 803 CC 3104	3	1	0	4
4	Physics Laboratory-VIII	SBS PHY 03 804 CC 00126	0	0	12	6
5	Discipline Specific Elective Course (DSE-06)		3	1	0	4
6	Discipline Specific Elective Course (DSE-07)		3	1	0	4

Note:

1. The Department offers discipline-specific elective (DSE) courses and Skill-Enhancement Elective (SEC) courses depending on the specialization and strength of faculty members, and the number of students. If class strength is less than 10, then that particular subject will not be offered.

DSE-06

- 1. Digital Electronics and Microprocessor [SBS PHY 03 801 DS 3104]
- 2. Solar Energy and Physics of Photovoltaic [SBS PHY 03 802 DS 3104]

- 1. General Theory of Relativity [SBS PHY 03 803 DS 3104]
- 2. Accelerator Physics [SBS PHY 03 804 DS 3104]
- 3. Characterization Techniques for Materials [SBS PHY 03 805 DS 3104]

Semester IX

.

Total credits: 28

S. No.	Course Title	Course Code	L	Т	Р	Credits
1	Condensed Matter Physics	SBS PHY 03 901 CC 3104	3	1	0	4
2	Particle Physics	SBS PHY 03 902 CC 3104	3	1	0	4
3	Physics Laboratory-IX	SBS PHY 03 903 CC 00126	0	0	12	6
4	Minor Project	SBS PHY 03 904 CC 00126	0	0	12	6
5	Discipline Specific Elective Course (DSE-08)		3	1	0	4
6	Discipline Specific Elective Course (DSE-09)		3	1	0	4

Note:

1. The Department offers discipline-specific elective (DSE) courses and Skill-Enhancement Elective (SEC) courses depending on the specialization and strength of faculty members, and the number of students. If class strength is less than 10, then that particular subject will not be offered.

DSE-8

- 1. Cosmology [SBS PHY 03 901 DS 3104]
- 2. Plasma Physics [SBS PHY 03 902 DS 3104]

- 1. Experimental Techniques in Nuclear and Particle Physics [SBS PHY 03 903 DS 3104]
- 2. Reactor Physics [SBS PHY 03 904 DS 3104]
- 3. Advanced Carbon Materials [SBS PHY 03 905 DS 3104]

Semester X

Total credits: 20

S. No.	Course Title	Course Code	L	Т	Р	Credits
1	Dissertation	SBS PHY 03 X01 CC XXX20	-	-	-	20

Note:

- Student may opt for full semester long dissertation work on the campus or outside the campus in some Laboratories/Institutes/Universities of National Importance.
- ➢ For carrying out the dissertation work outside the campus, student will have to produce an invitation/acceptance letter from external supervisor by the end of Semester III.
- Student may complete the dissertation project under the guidance of a supervisor on CUH campus.
- Student who will pursue the project outside CUH will have one internal supervisor and one external supervisor.
- Internal supervisor will continuously monitor the progress of research work of student in consultation with external supervisor. He/She will be responsible for internal assessment of the candidate from time to time.
- Student will be allowed to work with external supervisor at other outside institutions only after completing all the documentation process at CUH. Students have to follow the timeline strictly issued by Department from time to time.
- > Department will have no financial obligation if student carries out the dissertation work outside CUH.

Course Contents

(for Semester I to VI)

- 1. Core courses
- 2. Discipline Specific Elective courses
- 3. Skill Enhancement Elective courses
- 4. Generic Elective Courses

Core Courses

Mathematical Physics-I

Scheme	Name of the	L	Т	Р	С	Semester:	Contact	
Version:	subject:					Ι	Hours	
2022.28	Mathematical						per	
2023-28	Mathematical						Week:	
	Physics-I						3+1	
		3	1	0	4		Total	
							Hours:	
							45+15	
Subject	Applicable to	Evaluation		30	Exam	ination Dura	tion:	
Code: SBS	Program:	(Total	CI	Marks	3 hour	rs (Theory)		
PHY 03 101	Integrated	Marks:	Ε					
CC 3104	B.Sc. M.Sc.	100)		70	Prere	quisite of Cou	Irse: Basic	
	(Physics)		TE	Marks	knowl	edge of 10+2	standard	
			Ε		mathe	matics		
Course	This course aim	s to teach the Ca	alculus	, Vector (Calculus	, Orthogonal	Curvilinear	
Description	Coordinates, Dir	Coordinates, Dirac Delta function and its properties and Introductory theory of						
	probability.							
Course Objectives	The objective of various mathema formulate a physic of it.	tical problems.	He/she	shall dev	elop an	understanding	g of how to	
	1	COURSE S	YLLA	BUS				

it No.	Content of Each Unit	Hours of Each Unit
1	Review of vector algebra: Properties of vectors under rotations Scalar product and its invariance under rotations. Vector product, Scalar triple product and their interpretation in terms of area and volume respectively. Scalar and Vector fields.	15
	Vector Differentiation: Directional derivatives and normal derivative. Gradient of a scalar field and its geometrical interpretation. Divergence and curl of a vector field. Del and Laplacian operators. Vector identities.	
2	Vector Integration: Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notion of infinitesimal line, surface and volume elements. Line, surface and volume integrals of Vector fields. Flux of a vector field. Gauss' divergence theorem, Green's and Stokes Theorems and their applications.	15
	Orthogonal Curvilinear Coordinates: Orthogonal Curvilinear Coordinates. Derivation of Gradient, Divergence, Curl and Laplacian in Cartesian, Spherical and Cylindrical Coordinate Systems.	
3	Multiple Integrals Double and Triple Integrals : Change of Order of Integration. Change of Variables and Jacobian. Applications of Multiple Integrals: (1) Area Enclosed by Plane Curves, (2) Area of a Curved Surface, (3) Volumes of Solids.	15
	Calculus of Variations Constrained maxima and minima. Method of Lagrange undetermined multipliers and its application to simple problems in physics. Variational principle Euler-Lagrange equation and its application to simple problems.	

Probability. Bayes' Theorem and the idea of hypothesis testing.	4		15
---	---	--	----

TEXT BOOKS

- Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, F.E. Harris, 2013, Elsevier.
- An introduction to ordinary differential equations, E.A. Coddington, 2009, PHI learning
- Differential Equations, George F. Simmons, 2007, McGraw Hill.
- Mathematical Tools for Physics, James Nearing, 2010, Dover Publications.
- Mathematical methods for Scientists and Engineers, D.A. McQuarrie, 2003, Viva Book
- Advanced Engineering Mathematics, D.G. Zill and W.S. Wright, 5 Ed., 2012, Jones and Bartlett Learning
- Mathematical Physics, Goswami, 1 st edition, Cengage Learning
- Engineering Mathematics, S.Pal and S.C. Bhunia, 2015, Oxford University Press
- Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India.
- Essential Mathematical Methods, K.F.Riley & M.P.Hobson, 2011, Cambridge Univ. Press.
- Mathematical Physics, H.K. Dass and R. Verma, 2021, S. Chand & Company.

Mechanics

2023-28 3 1 0 4 3 1 </th <th>Scheme Version:</th> <th>Name of the subject: Mechanics</th> <th>L</th> <th>Τ</th> <th>Р</th> <th>C</th> <th>Semester: I</th> <th>Contact Hours per Week:</th>	Scheme Version:	Name of the subject: Mechanics	L	Τ	Р	C	Semester: I	Contact Hours per Week:	
Code: SBS PHY 03 102 CC 3104Program: Integrated B.Sc. M.Sc. (Physics)n (Total Marks: 100)CIEMarks TE3 hours (Theory) Prerequisite of Course: Knowledge of Vector Algebra & Vector CalculusCourse Descripti onThis course aims to introduce elementary concepts of Mechanics to the students so that they are able to understand fundamental aspects of forces, nature of forces and their applications. Objective here is that with the comparatively advanced mathematics tools than their high school curriculum, they will be able to apply these concepts in other 	2023-28		3	1	0	4		Hours:	
Code: SBS PHY 03 102 CC 3104Program: Integrated B.Sc. M.Sc. (Physics)n (Total Marks: 100)CIEMarks3 hours (Theory)Course Descripti on onM.Sc. (Physics)Marks: 100)TEEMarks3 hours (Theory)Prerequisite of Course: Knowledge of Vector Algebra & Vector CalculusCourse Descripti onThis course aims to introduce elementary concepts of Mechanics to the students so that they are able to understand fundamental aspects of forces, nature of forces and their applications. Objective here is that with the comparatively advanced mathematics tools than their high school curriculum, they will be able to apply these concepts in other branches of Physics and Science in general.Course Objective es• To understand the fundamentals of Physics • To get familiar with various concepts of mechanical problems related to Gravitational Force, spring force and oscillations. • To have a clear understanding about concepts related to space, time and relative motion.Course OutcomeAfter completion of this course, students would be able to: • Understand the fundamentals of dynamics in other science branches. • To have a clear understanding about concepts related to space, time and relative motion.sLearn about gravitational force and spring force • Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames.s• Course • Course • Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames.Mathematical of Dynamics : Review of vector algebra and differential a swell as non-inertial frames.	Subject	Applicable to	Evaluatio		30	Exam	ination Dura	ation:	
PHY 03 102 CC 3104 M.Sc. (Physics) Marks: 100) TEE 100) Marks IOE Knowledge of Vector Algebra & Vector Calculus Course Description on This course aims to introduce elementary concepts of Mechanics to the students so that they are able to understand fundamental aspects of forces, nature of forces and their applications. Objective here is that with the comparatively advanced mathematics tools than their high school curriculum, they will be able to apply these concepts in other branches of Physics and Science in general. Course Objective es • To understand the fundamentals of Physics • To get familiar with various concepts of mechanical problems related to Gravitational Force, spring force and oscillations. • To inform the students about applications of mechanics in other science branches. • To have a clear understanding about concepts related to space, time and relative motion. After completion of this course, students would be able to: Course Outcome Outcerstand the fundamentals of Orean about various concepts related to rotational dynamics and elasticity. • Learn about various concepts related to rotational dynamics and elasticity. • Learn about various concepts related to rotational dynamics and elasticity. • Learn about gravitational force and spring force • Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. Hours of Each Unit Init No. Content of Each Unit Hours of Each Unit	Code:	Program:	n	CIE	Marks	3 hour	rs (Theory)		
102 CC 3104 100) & Vector Calculus Course Descripti on This course aims to introduce elementary concepts of Mechanics to the students so that they are able to understand fundamental aspects of forces, nature of forces and their applications. Objective here is that with the comparatively advanced mathematics tools than their high school curriculum, they will be able to apply these concepts in other branches of Physics and Science in general. Course Objectiv es • To understand the fundamentals of Physics • To get familiar with various concepts of mechanical problems related to Gravitational Force, spring force and oscillations. • To inform the students about applications of mechanics in other science branches. • To have a clear understanding about concepts related to space, time and relative motion. Course Objectiv es After completion of this course, students would be able to: • Understand the fundamentals of dynamics in constant as well as variable mass systems • Learn about various concepts related to rotational dynamics and elasticity. • Learn about gravitational force and spring force • Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. Unit No. Content of Each Unit Hours of Each Unit 1 Fundamentals of Dynamics : Review of vector algebra and differential 15	SBS	8	(Total		70	Prere	quisite of Co	ourse:	
3104 Image: Constant and the fundamental spects of Mechanics to the students so that they are able to understand fundamental aspects of forces, nature of forces and their applications. Objective here is that with the comparatively advanced mathematics tools than their high school curriculum, they will be able to apply these concepts in other branches of Physics and Science in general. Course Objective set • To understand the fundamentals of Physics • To get familiar with various concepts of mechanical problems related to Gravitational Force, spring force and oscillations. • To inform the students about applications of mechanics in other science branches. Course Objective set • To inform the students about applications of mechanics in other science branches. • To have a clear understanding about concepts related to space, time and relative motion. Course Outcome S • Learn about various concepts related to rotational dynamics and elasticity. • Learn about gravitational force and spring force • Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. Unit No. Course of Course of Unit No. Course of Course of Course of Course of Unit Sof Softward the fundamentals of Vector algebra and differential Hours of Each Unit		M.Sc. (Physics)		TEE	Marks	Know	ledge of Vec	tor Algebra	
Course Descripti on This course aims to introduce elementary concepts of Mechanics to the students so that they are able to understand fundamental aspects of forces, nature of forces and their applications. Objective here is that with the comparatively advanced mathematics tools than their high school curriculum, they will be able to apply these concepts in other branches of Physics and Science in general. Course Objective es • To understand the fundamentals of Physics To get familiar with various concepts of mechanical problems related to Gravitational Force, spring force and oscillations. To inform the students about applications of mechanics in other science branches. To have a clear understanding about concepts related to space, time and relative motion. After completion of this course, students would be able to: • Understand the fundamentals of dynamics in constant as well as variable mass systems • Learn about various concepts related to rotational dynamics and elasticity. • Learn about gravitational force and spring force • Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. COURSE SYLLABUS Unit No. Content of Each Unit Hours of Each Unit 1 Fundamentals of Dynamics : Review of vector algebra and differential 15			100)			& Vec	tor Calculus		
Description This course aims to introduce elementary concepts of Mechanics to the students so that they are able to understand fundamental aspects of forces, nature of forces and their applications. Objective here is that with the comparatively advanced mathematics tools than their high school curriculum, they will be able to apply these concepts in other branches of Physics and Science in general. Course Objective es To understand the fundamentals of Physics To get familiar with various concepts of mechanical problems related to Gravitational Force, spring force and oscillations. To inform the students about applications of mechanics in other science branches. To have a clear understanding about concepts related to space, time and relative motion. After completion of this course, students would be able to: Understand the basic inception of space and spring force Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. S COURSE SYLLABUS									
on they are able to understand fundamental aspects of forces, nature of forces and their applications. Objective here is that with the comparatively advanced mathematics tools than their high school curriculum, they will be able to apply these concepts in other branches of Physics and Science in general. Course Objective es • To understand the fundamentals of Physics • To get familiar with various concepts of mechanical problems related to Gravitational Force, spring force and oscillations. • To inform the students about applications of mechanics in other science branches. • To have a clear understanding about concepts related to space, time and relative motion. After completion of this course, students would be able to: • Understand the fundamentals of dynamics in constant as well as variable mass systems • Learn about various concepts related to rotational dynamics and elasticity. • Learn about gravitational force and spring force • Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. Course Outrome s • Course Outrome • To understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames.		This source since to i t	oduce el-		moonte -f	Maal-	ion to the	donta ao 111	
applications. Objective here is that with the comparatively advanced mathematics tools than their high school curriculum, they will be able to apply these concepts in other branches of Physics and Science in general. Course Objective es • To understand the fundamentals of Physics • To get familiar with various concepts of mechanical problems related to Gravitational Force, spring force and oscillations. • To inform the students about applications of mechanics in other science branches. • To have a clear understanding about concepts related to space, time and relative motion. After completion of this course, students would be able to: • Understand the fundamentals of dynamics in constant as well as variable mass systems • Learn about various concepts related to rotational dynamics and elasticity. • Learn about gravitational force and spring force • Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. COURSE SYLLABUS Unit No. Content of Each Unit 1 Fundamentals of Dynamics : Review of vector algebra and differential	-			2	1				
than their high school curriculum, they will be able to apply these concepts in other branches of Physics and Science in general. Course Objectives • To understand the fundamentals of Physics • To get familiar with various concepts of mechanical problems related to Gravitational Force, spring force and oscillations. • To inform the students about applications of mechanics in other science branches. • To have a clear understanding about concepts related to space, time and relative motion. After completion of this course, students would be able to: • Understand the fundamentals of dynamics in constant as well as variable mass systems • Learn about various concepts related to rotational dynamics and elasticity. • Learn about gravitational force and spring force • Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. Course Unit No. Course Course Course SYLLABUS 1 Fundamentals of Dynamics : Review of vector algebra and differential	on								
branches of Physics and Science in general. Course Objectiv es • To understand the fundamentals of Physics • To get familiar with various concepts of mechanical problems related to Gravitational Force, spring force and oscillations. • To inform the students about applications of mechanics in other science branches. • To have a clear understanding about concepts related to space, time and relative motion. After completion of this course, students would be able to: • Understand the fundamentals of dynamics in constant as well as variable mass systems • Learn about gravitational force and spring force • Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. Unit No. Course Output 1 Fundamentals of Dynamics : Review of vector algebra and differential					-	•			
Course Objectiv es • To understand the fundamentals of Physics • To get familiar with various concepts of mechanical problems related to Gravitational Force, spring force and oscillations. • To inform the students about applications of mechanics in other science branches. • To have a clear understanding about concepts related to space, time and relative motion. After completion of this course, students would be able to: • Understand the fundamentals of dynamics in constant as well as variable mass systems • Learn about gravitational force and spring force • Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. Vinit No. Course Course of Course o		-		•	ll be able	to apply	y these conc	epts in other	
Objectiv • To get familiar with various concepts of mechanical problems related to Gravitational Force, spring force and oscillations. • To inform the students about applications of mechanics in other science branches. • To have a clear understanding about concepts related to space, time and relative motion. • After completion of this course, students would be able to: • Understand the fundamentals of dynamics in constant as well as variable mass systems • Learn about various concepts related to rotational dynamics and elasticity. • Learn about gravitational force and spring force • Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. COURSE SYLLABUS Unit No. Content of Each Unit 1 Fundamentals of Dynamics : Review of vector algebra and differential		branches of Physics and Science in general.							
Objectiv • To get familiar with various concepts of mechanical problems related to Gravitational Force, spring force and oscillations. • To inform the students about applications of mechanics in other science branches. • To have a clear understanding about concepts related to space, time and relative motion. • After completion of this course, students would be able to: • Understand the fundamentals of dynamics in constant as well as variable mass systems • Learn about various concepts related to rotational dynamics and elasticity. • Learn about gravitational force and spring force • Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. COURSE SYLLABUS Unit No. Content of Each Unit 1 Fundamentals of Dynamics : Review of vector algebra and differential		• To un donator d ti	ha fuu damaa	tala of D	havelee				
es Gravitational Force, spring force and oscillations. es To inform the students about applications of mechanics in other science branches. To have a clear understanding about concepts related to space, time and relative motion. After completion of this course, students would be able to: • Understand the fundamentals of dynamics in constant as well as variable mass systems • Learn about various concepts related to rotational dynamics and elasticity. • Learn about gravitational force and spring force • Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. COURSE SYLLABUS Unit No. Content of Each Unit 1 Fundamentals of Dynamics : Review of vector algebra and differential					•	nachan	al problem	a related to	
 To inform the students about applications of mechanics in other science branches. To have a clear understanding about concepts related to space, time and relative motion. After completion of this course, students would be able to: Understand the fundamentals of dynamics in constant as well as variable mass systems Learn about various concepts related to rotational dynamics and elasticity. Learn about gravitational force and spring force Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. Unit No. Content of Each Unit Hours of Each Unit 	Ũ	-			-		ical problem	s related to	
 To have a clear understanding about concepts related to space, time and relative motion. After completion of this course, students would be able to: Understand the fundamentals of dynamics in constant as well as variable mass systems Learn about various concepts related to rotational dynamics and elasticity. Learn about gravitational force and spring force Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. Unit No. Content of Each Unit Hours of Each Unit Hours of Each Unit 	es						in other scier	ice branches	
motion. After completion of this course, students would be able to: Course • Understand the fundamentals of dynamics in constant as well as variable mass systems s • Learn about various concepts related to rotational dynamics and elasticity. • Learn about gravitational force and spring force • Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. Vunit No. Course SYLLABUS 1 Fundamentals of Dynamics : Review of vector algebra and differential									
Course Outcome S • Understand the fundamentals of dynamics in constant as well as variable mass systems • Learn about various concepts related to rotational dynamics and elasticity. • Learn about gravitational force and spring force • Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. Vnit No. Content of Each Unit 1 Fundamentals of Dynamics : Review of vector algebra and differential				-8	· · · · · · · · · · · ·		F,		
Course Outcome S • Understand the fundamentals of dynamics in constant as well as variable mass systems • Learn about various concepts related to rotational dynamics and elasticity. • Learn about gravitational force and spring force • Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. Vnit No. Content of Each Unit 1 Fundamentals of Dynamics : Review of vector algebra and differential			s course, stud	lents wo	uld be abl	e to:			
Outcome systems S Learn about various concepts related to rotational dynamics and elasticity. Earn about gravitational force and spring force Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. COURSE SYLLABUS Coutent of Each Unit Hours of Each Unit 1 Fundamentals of Dynamics : Review of vector algebra and differential 15	Course	-					as well as v	ariable mass	
s • Learn about various concepts related to rotational dynamics and elasticity. • Learn about gravitational force and spring force • Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. COURSE SYLLABUS Unit No. Content of Each Unit 1 Fundamentals of Dynamics : Review of vector algebra and differential				5					
• Learn about gravitational force and spring force • Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. COURSE SYLLABUS Unit No. Content of Each Unit Hours of Each Unit 1 Fundamentals of Dynamics : Review of vector algebra and differential 15			ious concept	s related	to rotatio	nal dvn	amics and els	asticity	
• Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. COURSE SYLLABUS Unit No. Content of Each Unit Hours of Each Unit 1 Fundamentals of Dynamics : Review of vector algebra and differential			-			•			
as well as non-inertial frames. COURSE SYLLABUS Unit No. Content of Each Unit Hours of Each Unit 1 Fundamentals of Dynamics : Review of vector algebra and differential 15		Ũ			1 0		relative moti	on in inertial	
COURSE SYLLABUS Unit No. Content of Each Unit Hours of Each Unit 1 Fundamentals of Dynamics : Review of vector algebra and differential 15			_	_		ne, anu		on in meruar	
Unit No. Content of Each Unit Hours of Each Unit 1 Fundamentals of Dynamics : Review of vector algebra and differential 15			nertiai fraine	5.					
1 Fundamentals of Dynamics : Review of vector algebra and differential 15		COURSE SYLLABUS							
I diffutite of Dynamics Vice (10) of vector digeord and differential	Unit No.		Content of	É Each U	J nit				
	1	Fundamentals of Dyna	amics : Revi	ew of ve	ector algeb	ora and a	lifferential	15	
		-			-				

	Inertial frames; Review of Newton's Laws of Motion. Dynamics of a system of particles. Centre of Mass. Principle of conservation of momentum. Impulse. Momentum of variable-mass system: motion of rocket. Elastic and inelastic collisions between particles. Centre of Mass and Laboratory frames.	
	Work and Energy: Work and Kinetic Energy Theorem. Conservative and non-conservative forces. Force as the gradient of potential energy. Work & Potential energy. Elastic potential energy. Law of Conservation of Energy with an example of a spring-mass system. Work done by non-conservative forces (with an example of damped oscillations). Energy diagram. Stable and unstable equilibrium.	
2	 Rotational Dynamics: Angular momentum of a particle and system of particles. Torque. Principle of conservation of angular momentum. Rotation about a fixed axis. Moment of Inertia. Calculation of moment of inertia for rectangular, cylindrical and spherical bodies. Kinetic energy of rotation. Motion involving both translation and rotation. Elasticity: Relation between Elastic constants. Twisting torque on a Cylinder or Wire. Determination of Rigidity modulus:- Torsional pendulum and Searle's method. 	15
3	 Gravitation and Central Force Motion: Kepler's Laws. Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere. Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS). Physiological effects on astronauts. Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Non-Inertial Systems: Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications. Components of Velocity and Acceleration in Cylindrical and Spherical Coordinate Systems. 	15
4	Special Theory of Relativity: Galilean transformations; Galilean invariance. Michelson-Morley Experiment and its outcome. Simultaneity	15
	and order of events. Postulates of Special Theory of Relativity. Lorentz Transformations. Lorentz contraction. Time dilation. Relativistic	

transformation of velocity, frequency and wave number. Relativistic addition of velocities. Variation of mass with velocity. Massless Particles. Mass-energy Equivalence. Relativistic Doppler effect. Relativistic Kinematics.

Fluid Motion: Kinematics of Moving Fluids: Poiseuille's Equation for Flow of a Liquid through a Capillary Tube.

TEXT BOOKS

• Physics, Resnick, Halliday and Walker 8/e. 2008, Wiley.

- Fundamentals-of-Physics-I-Mechanics, R. Shankar, 2014, Yale University Press
- •An introduction to mechanics, D. Kleppner, R.J. Kolenkow, 1973, McGraw-Hill.
- Mechanics, Berkeley Physics, vol.1, C.Kittel, W.Knight, et.al. 2007, Tata McGraw-Hill.

• Analytical Mechanics, G.R. Fowles and G.L. Cassiday. 2005, Cengage Learning.

- Feynman Lectures, Vol. I, R.P.Feynman, R.B.Leighton, M.Sands, 2008, Pearson Education
- Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons.
- University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- Mechanics, D.S. Mathur, S. Chand and Company Limited, 2000
- University Physics. F.W Sears, M.W Zemansky, H.D Young 13/e, 1986, Addison Wesley

• Physics for scientists and Engineers with Modern Phys., J.W. Jewett, R.A. Serway, 2010, Cengage Learning

• Theoretical Mechanics, M.R. Spiegel, 2006, Tata McGraw Hill.

Physics Laboratory-I

Scheme	Name of the subject:	L	Т	Р	С	Semester:	Contact
Version:	Physics Laboratory-I					Ι	Hours
							per
							Week:
2023-28		0	0	4	2		4
		0	0	4	2		Total
							Hours: 60
Subject	Applicable to	Evaluatio		15	Exam	ination Du	
Code:	Program:	n	CIE	Marks		s (Practical)	
SBS	Integrated B.Sc.	(Total	012	35		quisite of C	
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	None	1	
103 CC		50)					
0042							
#		List of Ex	perimer	nts	1		Hours
1	 gauge and travelling microscope. To study the random error in observations. To determine the height of a building using a Sextant. To study the Motion of Spring and calculate (a) Spring constant, (b) g and (c) Modulus of rigidity. To determine the Moment of Inertia of a Flywheel. To determine g and velocity for a freely falling body using Digital 						30
2	 Timing Technique To determine Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method). To determine Young's Modulus of a Wire by Optical Lever Method. To determine Modulus of Rigidity of a Wire by Maxwell's needle. To determine the elastic Constants of a wire by Searle's method. To determine the value of g using Bar Pendulum. To determine the value of g using Kater's Pendulum. 					r Method. needle.	30
Par CerPra	ora, C.L. 2015. B.Sc. Prachigrahi, S. and Mallick, H ngage Learning India. kash, I. and Ramakrishna lhi: Kitab Mahal.	TEXT ctical Physics 3. 2015. Engi	BOOK BOOK B. II Edit	S ion. New Practical I	Delhi: S Physics.	I Edition. N	lew Delhi:

Introduction to Computer Programming

Scheme	Name of the subject:	L	Т	Р	C	Semester:	Contact			
Version:	Introduction to					Ι	Hours			
	Computer						per			
	Programming						Week:			
2023-28	Trogramming					4				
		0	0	4	2		Total			
							Hours:			
							60			
Subject	Applicable to	Evaluatio		15		ination Dur				
Code:	Program:	n	CIE	Marks		rs (Practical)				
SBS	Integrated B.Sc.	(Total		35		quisite of C	ourse:			
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	None					
104 CC		50)								
0042										
#		List of Ex	-				Hours			
1	 Introduction and Overview: Computer Architecture and organization; memory and input/output devices; Number system and computer arithmetic. Programming with C++: Introduction to the concept of Object Oriented Programming, advantages of C++ over conventional programming languages, tokens, keywords, basic data-types, variable declaration, operators, classes and objects, C++ programming syntax for input/output, control structures: selection structure and loop structure, operators, simple and inline functions, arrays. Program to perform basic arithmetic operations on two numbers entered by user Use of decision structures: if, if-else, nested if-else and case statements. To find the largest number out of two/three numbers Programs based on use of loop structure: for and while statements. To find the roots of a quadratic equation. Programs based on use of 1-D/2-D arrays and to perform basic arithmetic operations. To find the standard deviation, mean, variance and moments for 									
2	 To find the standard deviation, mean, variance and moments for a set of numbers. Introduction to mathematical tools: Solution of ordinary differential equations (ODEs): Euler method, modified Euler method, RK methods; Numerical integration of 1D function: Trapezoidal and Simpson's rules. Program to perform numerical integration of a one-dimensional function using Trapezoidal and Simpson's rules 					30				

	 Numerical solution of ODEs using Euler's method, modified Euler's method and RK method of 4th order. Motion of spherical body falling in (a) viscous medium (b) air Projectile motion of a body with horizontal/angular projection. Motion of a charged particle in uniform electric/magnetic field, and crossed electric and magnetic field. Study of charging and discharging of a capacitor in RC circuit with DC source. 	
	TEXT BOOKS andra, S. 2005. Computer Applications in Physics. II Edition. New Delhi: N	larosa
• Ve De	blication House. rma R.C., Ahluwalia, P.K., Sharma, K.C. 2000. Computational Physics. I lhi: New Age International Publishers.	
	lagurusamy E. 2015. Object Oriented Programming with C++. VI Edition Graw Hill Ed. (India).	. New Delhi:

Electricity and Magnetism

Scheme	Name of the subject:	L	Т	Р	C	Semester:	Contact
Version:	Electricity and					II	Hours
2023-28	Magnetism						per Week:
							3+1
		3	1	0	4		Total
		5	1	Ū			Hours:
							45+15
Subject	Applicable to	Evaluatio		30	Exam	ination Dura	tion:
Code:	Program:	n	CIE	Marks	3 hours (Theory)		
SBS	Integrated B.Sc.	(Total		70	Prerequisite of Course:		
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	Knowledge of Vector Algebra		
201 CC		100)			& Vector Calculus		
3104							
Descripti on	topics of Electric Field and Electric Potential, Electrostatic energy of system of charges, Dielectric Properties of Matter, Magnetic Field, Magnetic Properties of Matter, Electromagnetic Induction, Electrical Circuits, Network Theorems and Ballistic Galvanometer						
Course Objectiv es	 This course will help in understanding basic concepts of electricity and magnetism and their applications. Basic course in electrostatics will equips the student with required prerequisites to understand electrodynamics phenomena. 						
	 After going through the course, the student should be able to Demonstrate Coulomb's law for the electric field, and apply it to systems of point charges as well as line, surface, and volume distributions of charges. 						
Course Outcome s	 point charges as Explain and dif (electric potentiania) Apply Gauss's lage Articulate know 	oulomb's law s well as line, ferentiate the al, electric pe aw of electro vledge of electro	w for the surface, e vector otential e ostatics to etric curr	e electric and volur (electric fi energy) for o solve a v	field, an ne distr ields, Co malism variety o	ibutions of ch oulomb's law s of electrosta f problems.	arges. and scalar attics.
Outcome	 point charges as Explain and dif (electric potentiania) Apply Gauss's lage Articulate know 	oulomb's law s well as line, ferentiate the al, electric pe aw of electro vledge of electro	w for the surface, e vector otential e ostatics to ctric curri ential.	e electric and volur (electric fi energy) for o solve a v rent, resist	field, an ne distr ields, Co malism variety o	ibutions of ch oulomb's law s of electrosta f problems.	arges. and scalar attics.
Outcome	 point charges as Explain and dif (electric potentiania) Apply Gauss's lage Articulate know 	well as line, ferentiate the al, electric po- aw of electro vledge of electro d electric pot	w for the surface, e vector otential e ostatics to ctric curr ential. SYLLA	e electric and volur (electric fi energy) for o solve a v rent, resist	field, an ne distr ields, Co malism variety o	ibutions of ch oulomb's law s of electrosta f problems.	arges. and scalar attics.
Outcome s	 point charges as Explain and dif (electric potentiania) Apply Gauss's lage Articulate know 	oulomb's law s well as line, ferentiate the al, electric po- daw of electro vledge of electro d electric pot COURSE Content of	w for the surface, e vector o otential e ostatics to ctric curr ential. SYLLA Each U	e electric and volur (electric fi energy) for o solve a v rent, resist ABUS Jnit	field, an ne distr ields, Co malism variety o ance an	ibutions of ch oulomb's law s of electrosta f problems. d capacitance	arges. and scalar attics. in terms of Hours of

	with spherical, cylindrical and planar symmetry. Conservative nature of Electrostatic Field. Electrostatic Potential. Laplace's and Poisson equations. The Uniqueness Theorem. Potential and Electric Field of a dipole. Force and Torque on a dipole.	
2	 Electrostatic energy: System of charges, Charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere. Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector D. Relations between E, P and D. Gauss' Law in dielectrics. 	15
3	 Magnetic Field: Magnetic force between current elements and definition of Magnetic Field B. Biot-Savart's Law and its simple applications: straight wire and circular loop. Current Loop as a Magnetic Dipole and its Dipole Moment (Analogy with Electric Dipole). Ampere's Circuital Law and its application to (1) Solenoid and (2) Toroid. Properties of B: curl and divergence. Vector Potential. Magnetic Force on (1) point charge (2) current carrying wire (3) between current elements. Torque on a current loop in a uniform Magnetic Field. Magnetic Fields in Matter: Magnetization vector (M). Magnetic Intensity (H). Magnetic Susceptibility and permeability. Relation between B, H, M. Ferromagnetism. B-H curve and hysteresis. 	15
4	 Electromagnetic Induction: Faraday's Law. Lenz's Law. Self Inductance and Mutual Inductance. Reciprocity Theorem. Energy stored in a Magnetic Field. Introduction to Maxwell's Equations. Charge Conservation and Displacement current. Electrical Circuits: AC Circuits: Kirchhoff's laws for AC circuits. Complex Reactance and Impedance. Series LCR Circuit: (1) Resonance, (2) Power Dissipation and (3) Quality Factor, and (4) Band Width. Parallel LCR Circuit. 	15
Page	Network theorems: Ideal Constant-voltage and Constant-current Sources. Network Theorems: Thevenin theorem, Norton theorem,	

	Superposition theorem, Reciprocity theorem, Maximum Power Transfer theorem. Applications to dc circuits. Ballistic Galvanometer: Torque on a current Loop. Ballistic Galvanometer: Current and Charge Sensitivity. Electromagnetic damping. Logarithmic damping. CDR.					
	TEXT BOOKS					
1.	Introduction to Electrodynamics, D.J. Griffiths, 3rd Edn., 2012, Pearson Prentice Hall.					
2.	Electricity and Magnetism, Edward M. Purcell, 2017, McGraw-Hill Education					
3.	Electricity, Magnetism & Electromagnetic Theory, S. Mahajan and Choudhury, 2012, Tata					
	McGraw					
4.	4. Fundamentals of Physics Vol. II, R. Shankar, Yale University Press, 2016					
5.	5. Feynman Lectures Vol. II, R.P.Feynman, R.B.Leighton, M. Sands, 2012, Pearson Education					
6.						
7.	Electricity and Magnetism, J.H.Fewkes & J.Yarwood. Vol. I, 1991, Oxford Univ. Press.					

Waves and Optics

Scheme	Name of the subject:	L	Т	Р	С	Contact	
Version:	Wayas and Ontias					II	Hours
	Waves and Optics						per
							Week:
2023-28							3+1
		4	0	0	4		Total
							Hours:
							45+15
Subject	Applicable to	Evaluatio		30	Exam	ination Dura	ation:
Code:	Program:	n	CIE	Marks	3 hour	s (Theory)	
SBS	Integrated B.Sc.	(Total		70	Prere	quisite of Co	ourse:
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	None		
202 CC		100)					
4004							
Course	This course is intended	to introduce	the stud	ent to a br	oad rang	ge of physica	l phenomena
Descripti	involving waves (inclu	uding mecha	anical w	vaves, sou	nd way	ves, and ele	ctromagnetic
on	waves), coherence, inte	rference and	diffracti	on phenor	nena		
Course	• Learn the ba	sics of wave	motion.				
Objectiv	 Know about 	the behavior	r of light	due to its	wave na	ature.	
es	 Identify and 	understand	different	phenome	na due	to the interac	ction of light
CB	with light an	d matter.					
	 Analyze son 	ne of the fun	damenta	l laws and	princip	les of light w	which is used
	in many imp	ortant optica	l instrun	nents.			
	After completion of this	s course, stud	lents wo	uld be able	e to:		
Course			11.00				
Outcome	• Enable the stude	•	ze differe	ent phenor	nena du	e to the intera	action of
S	light with light a						
	• Train the studen		-				<u></u>
	• Help the student		ind vario	ous natural	phenon	nena using di	tterent
	apparatus in the	laboratory.					
COURSE SYLLABUS							
Unit No.		Content of	Each I	Init			Hours of
		Content OI					Each Unit

1	 SHM: Simple Harmonic Oscillations. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations: Transient and steady states; Resonance, sharpness of resonance; power dissipation and Quality Factor. Superposition of Harmonic Oscillations: (a) Superposition of Collinear Harmonic oscillations: Linearity and Superposition Principle. Superposition of two collinear oscillations having (1) equal frequencies and (2) different frequencies (Beats). Superposition of N collinear Harmonic Oscillations with (1) equal phase differences and (2) equal frequencies. (b) Superposition of two perpendicular Harmonic Oscillations: Graphical and Analytical Methods. Lissajous Figures with equal an unequal frequency and their uses. 	15
2	 Wave Motion: Plane and Spherical Waves. Longitudinal and Transverse Waves. Plane Progressive (Travelling) Waves. Wave Equation. Particle and Wave Velocities. Differential Equation. Pressure of a Longitudinal Wave. Energy Transport. Intensity of Wave. Water Waves: Ripple and Gravity Waves Velocity of Waves: Velocity of Transverse Vibrations of Stretched Strings. Velocity of Longitudinal Waves in a Fluid in a Pipe. Newton's Formula for Velocity of Sound. Laplace's Correction. Superposition of Harmonic Waves: Standing (Stationary) Waves in a String: Fixed and Free Ends. Analytical Treatment. Changes with respect to Position and Time. Energy of Vibrating String. Transfer of Energy. Normal Modes of Stretched Strings. Plucked and Struck Strings. Melde's Experiment. (b) Longitudinal Standing Waves and Normal Modes. Open and Closed Pipes. (c) Superposition of N Harmonic Waves. Phase and Group Velocities. 	15
3	 Wave Optics: Electromagnetic nature of light. Definition and properties of wave front. Huygens Principle. Temporal and Spatial Coherence. Interference: Division of amplitude and wavefront. Young's double slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes); 	15

	Fringes of equal thickness (Fizeau Fringes).Newton's Rings:Measurement of wavelength and refractive index.	
	Interferometer: Michelson Interferometer-(1) Idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, and (5) Visibility of Fringes. Fabry-Perot interferometer.	
	Diffraction: Kirchhoff's Integral Theorem, Fresnel-Kirchhoff's Integral formula and its application to rectangular slit.	
4	Fraunhofer diffraction: Single slit. Circular aperture, Resolving Power of a telescope. Double slit. Multiple slits. Diffraction grating. Resolving power of grating.	15
	Fresnel Diffraction: Fresnel's Assumptions. Fresnel's Half-Period Zones for Plane Wave. Theory of a Zone Plate: Multiple Foci of a Zone Plate. Fresnel's Integral, Fresnel diffraction pattern of a straight edge, a slit and a wire.	
	TEXT BOOKS	
 Fu Pu O Ti Ti Fu 	Vaves: Berkeley Physics Course, vol. 3, Francis Crawford, 2007, Tata McGra undamentals of Optics, F.A. Jenkins and H.E. White, 1981, McGraw-Hill rinciples of Optics, Max Born and Emil Wolf, 7th Edn., 1999, Pergamon Pres ptics, Ajoy Ghatak, 2008, Tata McGraw Hill he Physics of Vibrations and Waves, H. J. Pain, 2013, John Wiley and Sons. he Physics of Waves and Oscillations, N.K. Bajaj, 1998, Tata McGraw Hill. undamental of Optics, A. Kumar, H.R. Gulati and D.R. Khanna, 2011, R. Ch ublication s .	88.
• A	textbook of Optics; N Subramanyam, B. Lal and M.N.Avadhanulu; S.Chand	l Publishing

Physics Laboratory-II

Scheme	Name of the subject:	L	Т	Р	С	Semester:	Contact
Version:	Physics Laboratory-II					II	Hours
	T Hysics Edoorddory-H						per
							Week:
2023-28						-	8
		0	0	8	4		Total
							Hours:
							120
Subject	Applicable to	Evaluatio		30	Exam	ination Dura	ation:
Code:	Program:	n	CIE	Marks	3 hour	rs (Practical)	
SBS	Integrated B.Sc.	(Total		70	Prere	quisite of Co	urse:
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	None		
203 CC		100)					
0084							
#		List of Ex	perimei	nts			Hours
1	 Use a Multimeter Voltages, (c) D electrical fuses. To study the char To study the char To study the char determine its resonance, (c) Q To study the r determine its (a Q. Conversion of g To determine the To determine the Potentiometer. To determine an Bridge. To compare capace 10. Measurement of (determine dB/c 11. To verify the The 	60					

	14. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer	
	15. Determine a high resistance by leakage method using Ballistic	
	Galvanometer.	
	16. To determine the self-inductance of a coil by Rayleigh's method.	
	17. To determine the mutual inductance of two coils by the Absolute	
	method.	
	1. To investigate the motion of coupled oscillators	
	2. To determine the Frequency of an Electrically Maintained	
	Tuning Fork by Melde's Experiment and to verify $\lambda 2 - T$ Law.	
	3. To study Lissajous Figures	
	4. Familiarization with Schuster's focussing; determination of angle	
	of prism.	
	5. To determine the Coefficient of Viscosity of water by Capillary	
	Flow Method (Poiseuille's method).	
	6. To determine the Refractive Index of the Material of a Prism	
	using Sodium Light.	
2	7. To determine Dispersive Power of the Material of a Prism using	<i>c</i> 0
2	Mercury Light 8 To determine the value of Couchy Constants	60
	 8. To determine the value of Cauchy Constants. 9. To determine the Resolving Power of a Prism. 	
	10. To determine wavelength of sodium light using Fresnel Biprism.	
	11. To determine wavelength of sodium light using Newton's Rings.	
	12. To determine the wavelength of Laser light using Diffraction of	
	Single Slit.	
	13. To determine wavelength of (1) Sodium and (2) Spectral lines of	
	the Mercury light using plane diffraction Grating	
	14. To determine the Resolving Power of a Plane Diffraction	
	Grating.	
	15. To measure the intensity using photosensor and laser in	
	diffraction patterns of single and double slits.	
	TEXT BOOKS	
		~
	pra, C.L. 2015. B.Sc. Practical Physics. II Edition. New Delhi: S. Chand & C.	
	nigrahi, S. and Mallick, B. 2015. Engineering Practical Physics. I Edition. N	New Delhi:
	ngage Learning India.	
	kash, I. and Ramakrishna. 2011. A Text Book of Practical Physics. I Editio	n. New
Del	lhi: Kitab Mahal.	

Mathematical Physics-II

Scheme	Name of the	L	Т	Р	C	Semester:	Contact
Version:	subject:					III	Hours
	Mathematical						per Week:
	Physics-II						vvеек: 3+1
2023-28	,	3	1	0	4		Total
		5	1	Ū			Hours:
							45+15
Subject	Applicable to	Evaluatio		30	Exam	ination Dura	tion:
Code:	Program:	n	CIE	Marks	3 hour	rs (Theory)	
SBS PHY	Integrated B.Sc.	(Total		70	Prere	quisite of Co	urse:
03 301 CC	M.Sc. (Physics)	Marks:	TEE	Marks		matical Physi	
3104		100)				·	
Course	This course aims at	providing kn	owledge	of real an	alysis, C	Complex Anal	lysis, matrix
Description	algebra and their app	lications in v	various b	ranches of	Physic	s.	
Course Objectives Course Outcomes	 Knowledge of various mathematical tools like power series expansion, complex analysis, and contour integrals. These skills will help in understanding the behavior of the modeled system/s. After completion of this course, students would be able to: Learn about the analytic properties of function and power series expansions of various functions Learn about the complex numbers and their properties, functions of complex numbers and contour integrals. Learn about the matrix algebra and its applications related to differential equation solutions. 						
		COURSE	SYLLA	ABUS			
Unit No.	Content of Each Unit						Hours of Each Unit
1.	Recapitulation: Limits, continuity, average and instantaneous quantities, differentiation. Plotting functions, Intuitive ideas of continuous, differentiable, etc. functions and plotting of curves.15Series analysis: The Geometric series. Convergent and Divergent Series. Tests for series convergence. Power series. Expanding Functions as power series.15						15

2.	 Complex Analysis-I: Brief Revision of Complex Numbers and their Graphical Representation. Euler's formula, De Moivre's theorem, Roots of Complex Numbers. Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions 				
3	Complex Analysis-II: Singular functions: poles and branch points, order of singularity, branch cuts. Integration of a function of a complex variable. Cauchy's Inequality. Cauchy's Integral formula. Simply and multiply connected region. Laurent and Taylor's expansion. Residues and Residue Theorem, Contour Integration and its Applications to Evaluation of definite Integrals only.	15			
4	Matrices: Addition and Multiplication of Matrices. Null Matrices. Diagonal, Scalar and Unit Matrices. Upper-Triangular and Lower- Triangular Matrices. Transpose of a Matrix. Symmetric and Skew- Symmetric Matrices. Conjugate of a Matrix. Hermitian and Skew- Hermitian Matrices. Singular and Non-Singular matrices.Orthogonal and Unitary Matrix. Trace of a Matrix. Inner Product. Eigen-values and Eigenvectors. Cayley- Hamilton Theorem. Diagonalization of Matrices.	15			
	TEXT BOOKS				
3 rd ea Mathe Comp Comp Comp McGr First c	ematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and d., 2006, Cambridge University Press ematics for Physicists, P. Dennery and A.Krzywicki, 1967, Dover Publica elex Variables, A.S.Fokas & M.J.Ablowitz, 8 th Ed., 2011, Cambridge Un elex Variables, A.K. Kapoor, 2014, Cambridge Univ. Press elex Variables and Applications, J.W. Brown & R.V. Churchill, 7 th Ed. 20 waw-Hill course in complex analysis with applications, D.G. Zill and P.D. Shanahar & Bartlett	ations iv. Press 003, Tata			

Thermal Physics

Scheme Version:	Name of the subject:	L	Т	Р	C	Semester: III	Contact Hours
version.	Thermal Physics					111	per Week:
2023-28		2	1			-	3+1
		3	1	0	4		Total Hours: 45+15
Subject	Applicable to	Evaluatio		30	Exam	ination Dura	ation:
Code:	Program:	n	CIE	Marks	3 hour	rs (Theory)	
SBS	Integrated BSc-MSc	(Total					
PHY 03 302 CC	Physics	Marks:		70 Maulaa		quisite of Co	
302 CC 3104		100)	TEE	Marks	0	School Mathe mental Physi	
Course	This course is designed	to understar	nd the re	lations bet			
Descripti	of physical systems						
on	thermodynamics learne	ed at school	in more	e advanced	d percep	ption and de	velops them
	further.						
	• To understand the	ne fundamen	tal laws	of thermod	lynamic	s and their ap	oplications to
Course	various systems	and processe	es				
Objectiv	• To understand the	ne concepts o	of entropy	y, thermod	lynamic	potentials an	d Maxwell's
es	thermodynamic	relations					
	• To give exposi	ure about th	ne kinet	ic theory	of gase	es, transport	phenomena
	involved in idea	l gases, phas	e transit	ions and b	ehavior	of real gases	
	• To able the stud	ents for solvi	ing the p	roblems re	elated to	thermodyna	mics
	At the end of this cours	e, the studen	ts will be	e able to			
	• Grasp the basic	-				-	
Course	• Understand the	concepts of e	entropy,	reversible	and irre	versible proc	cesses,
Outcome	thermodynamic	potentials, a	nd Maxv	vell's relat	ions and	d their physic	cal
S	interpretations.						
	• Learn the basic	-		-	-		
	distribution law					-	
	collisions, visco						motion.
	• Understand the				nd real	gases.	
		COURSE	SYLLA	BUS			
Unit No.	Content of Each Unit						Hours of Each Unit
1	Ideal Gas: Concept of	-	0		· •		15
	by gas, rms speed of m	olecules, Bo	oyle's la	w, KE per	unit vo	olume of a	

	gas, derivation of gas equation and gas laws, Avogadro's hypothesis, Graham's law of gas diffusion, temperature dependence of rms velocity, Brownian motion: Langevin's theory, Einstein's theory, degrees of freedom, Maxwell's law of equipartition of energy, relation between specific heats and degrees of freedom, specific heats of mono-, di-, and polyatomic gases, adiabatic expansion of an ideal gas, kinetic interpretation of temperature, change in pressure with height.	
2	 Real Gases: Deviations from the ideal gas equation, Virial equation, Andrew's experiments on CO₂ gas, critical constants, continuity of liquid and gaseous State, vapor and gas; Boyle temperature, Van der Waal's equation of state for real gases, values of critical constants, law of corresponding states, comparison with experimental curves, p-V diagrams, Joule's experiment, Joule-Thomson porous plug experiment, Joule-Thomson effect for real and Van der Waal gases, temperature of inversion. Joule-Thomson cooling. Transport phenomenon in gases: Molecular collisions, mean free path, collision probability, estimates of mean free path, transport phenomenon in ideal gases: (1) viscosity, (2) thermal conductivity, and (3) diffusion. 	15
	brownian motion and its significance. Zeroth and First Law of Thermodynamics: Extensive and intensive Thermodynamic Variables, Thermodynamic Equilibrium, Zeroth Law of Thermodynamics & Concept of Temperature, Concept of Work & Heat, State Functions, First Law of Thermodynamics and its differential form, Internal Energy, First Law & various processes, Applications of First Law: General Relation between CP and CV, Work Done during Isothermal and Adiabatic Processes.	
3	Second Law of Thermodynamics: Reversible and Irreversible process with examples. Conversion of Work into Heat and Heat into Work. Heat Engines. Carnot's Cycle, Carnot engine & efficiency. Refrigerator & coefficient of performance, 2nd Law of Thermodynamics: Kelvin-Planck and Clausius Statements and their Equivalence. Carnot's Theorem. Applications of Second Law of Thermodynamics: Thermodynamic Scale of Temperature and its Equivalence to Perfect Gas Scale.	15
4	Entropy: Concept of Entropy, Clausius Theorem, Clausius Inequality, second Law of Thermodynamics in terms of entropy, entropy of a perfect gas, principle of increase of entropy, entropy changes in reversible and irreversible processes with examples, entropy of the universe, entropy changes in reversible and irreversible processes, principle of increase of entropy, third law of thermodynamics. unattainability of absolute zero.	15
	Thermodynamic Potentials: Extensive and intensive thermodynamic variables. thermodynamic potentials: internal energy, enthalpy, Helmholtz free energy, Gibb's free energy, and their definitions, properties and applications, magnetic work, cooling due to adiabatic	

demagnetization, first and second order phase transitions with examples, Clausius-Clapeyron equation and Ehrenfest equations, Maxwell's thermodynamic relations: derivations and applications of Maxwell's relations, Maxwell's relations: (1) Clausius-Clapeyron equation, (2) values of Cp-Cv.

TEXT BOOKS

- Heat and Thermodynamics, M.W. Zemansky, Richard Dittman, 1981, McGraw-Hill.
- A Treatise on Heat, Meghnad Saha, and B.N.Srivastava, 1958, Indian Press
- Thermal Physics, S. Garg, R. Bansal and Ghosh, 2nd Edition, 1993, Tata McGraw-Hill
- Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer.
- Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. 1988, Narosa.
- Concepts in Thermal Physics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford University Press
- Thermal Physics, A. Kumar and S.P. Taneja, 2014, R. Chand Publications.
- Thermal Physics, B.K. Agrawal, Lok Bharti Publications.
- Heat, Thermodynamics and Statistical Physics, Brij Lal, N. Subrahmanyam, and P.S. Hemne, 2021, S. Chand Publications.

Analog Systems and Applications

Scheme Version:	Name of the subject:	L	Т	Р	C	Semester: III	Contact Hours
	Analog Systems and Applications						per Week:
2023-28		3	1	0	4		3+1 Total Hours:
G 1 . 4	A 1. 11 /			20	Б		45+15
Subject Code:	Applicable to Program:	Evaluatio	CIE	30 Marks		ination Dur rs (Theory)	ation:
SBS	Integrated B.Sc.	n (Total	CIE	70		quisite of Co	urse.
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	None	quisite of Co	Juise.
303 CC	Jan (Jan Jan)	100)					
3104							
Course	This course is aimed at		-		is, BJT,	MOSFETs,	Op-Amps as
Descripti	well as their application	is in the Ana	log dom	ain.			
on							
	• To know abo	out the basics	of semi	conductor	PN junc	ction, its varie	ous types and
Course	its application	ons to various	s electro	nic circuit	s.		
Objectiv	• To understa	nd the prope	erties, wo	orking and	l applica	ations of bip	olar junction
es	transistors as	s amplifiers a	and oscil	lators.			
	 To Familiari 	ze with oper	ational a	mplifiers,	its appl	ications and	analysis
	• To develop	knowledge	about	analog to	o digita	l and digita	al to analog
	conversion t	echniques					_
	After completion of this	s course, stud	lents wo	uld be able	e to:		
Course	• Learn the found	ation knowle	edge of a	nalog elec	tronic s	ystems.	
Outcome	• Learn the worki	ng and applie	cations of	of PN junc	tion and	l bipolar junc	tion
S	transistors (BJT)).					
	• Learn to analyze	e circuits con	taining 1	PN junctio	n and B	JT along wit	h the
	application of B	JT as amplif	iers and	oscillators			
	• Develop basic k	nowledge of	operatio	onal ampli	fiers and	d its application	ons.
		COURSE	SYLLA	BUS			
Unit No.	Content of Each Unit						Hours of Each Unit
	Introduction to CR	D: Block I	Diagram	of CRC). Elect	tron Gun,	
	Deflection System and				• •	-	
1	of CRO: (1) Study of V		2) Measu	rement of	Voltag	e, Current,	15
	Frequency, and Phase D				-		
	Semiconductor Diode		• •			•••	
	Diagram. Conductivity	and Mobil	ity, Con	cept of L	Jrift ve	locity. PN	

	Junction Fabrication (Simple Idea). Barrier Formation in PN Junction Diode. Static and Dynamic Resistance. Current Flow Mechanism in Forward and Reverse Biased Diode. Drift Velocity. Derivation for Barrier Potential, Barrier Width and Current for Step Junction. Two-terminal Devices and their Applications: (1) Rectifier Diode: Half-wave Rectifiers. Center-tapped and Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency, (2) Zener Diode and Voltage Regulation. Principle and structure of (1) LEDs, (2) Photodiode, (3) Solar Cell.	
2	Bipolar Junction transistors: n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC Configurations. Current gains α and β Relations between α and β . Load Line analysis of Transistors. DC Load line and Q-point. Physical Mechanism of Current Flow. Active, Cutoff and Saturation Regions. Amplifiers: Transistor Biasing and Stabilization Circuits. Fixed Bias and Voltage Divider Bias. Transistor as 2-port Network. h-parameter Equivalent Circuit. Analysis of single-stage CE amplifier using Hybrid Model. Input and Output Impedance. Current, Voltage and Power Gains.	15
3	 Classification of Class A, B & C Amplifiers. Coupled Amplifier: RC-coupled amplifier and its frequency response. Feedback in Amplifiers: Effects of Positive and Negative Feedback on Input Impedance, Output Impedance, Gain, Stability, Distortion and Noise. Sinusoidal Oscillators: Barkhausen's Criterion for self-sustained oscillations. RC Phase shift oscillator, determination of Frequency. Hartley & Colpitts oscillators. 	15
4	Operational Amplifiers (Black Box approach): Characteristics of an Ideal and Practical Op-Amp. (IC 741) Open-loop and Closed-loop Gain. Frequency Response. CMRR. Slew Rate and concept of Virtual ground. Applications of Op-Amps: (1) Inverting and non-inverting amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Log amplifier, (7) Zero crossing detector (8) Wein bridge oscillator.	15
• Int	TEXT BOOKS regrated Electronics, J. Millman and C.C. Halkias, 1991, Tata Mc-Graw Hill	
 Ele So Les Ele Hill OF Ele Ser 	ectronics: Fundamentals and Applications, J.D. Ryder, 2004, Prentice Hall. lid State Electronic Devices, B.G.Streetman & S.K.Banerjee, 6th Edn.,2009 arning. ectronic Devices & circuits, S.Salivahanan & N.S.Kumar, 3rd Ed., 2012, Tat	, PHI ta Mc-Graw rentice Hall.)08, Springer.

Physics Laboratory-III

Scheme Version:	Name of the subject: Physics Laboratory- III	L	Т	Р	C	Semester: III	Contact Hours per Week: 12
2023-28		0	0	12	6		Total Hours: 180
Subject	Applicable to	Evaluatio		45	Exam	ination Dura	tion:
Code:	Program:	n	CIE	Marks	3 hour	rs (Practical)	
SBS	Integrated B.Sc.	(Total		105	Prere	quisite of Co	urse:
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	None		
304 CC		150)					
00126							
#		List of Ex	perime	nts			Hours
1	 To study V-I c emitting diode. To study the V- voltage regulato Study of V-I & power point & e To study the ch CE configuratio To study the va class A operatio To design a CE using voltage di To study the free transistor amplit To design Wien amp. To design a pha BJT. To study the Co To design a dia specifications. 	I characteris r. power curve efficiency. aracteristics n. rious biasing n. transistor an vider bias. quency respo fier. bridge oscil ase shift osci	tics of a es of sola of a Bip g config mplifier onse of vo llator for illator of	Zener dic ar cells, ar polar Junc urations o of a given oltage gain given fre	ode and nd find r tion Tra f BJT fa n gain (n of a RO equency ecificati	its use as maximum insistor in or normal mid-gain) C-coupled using op- ons using	60

	12. To study the analog to digital convertor (ADC) IC.	
	13. To design an inverting amplifier using Op-amp (741,351) for dc	
	voltage of given gain	
	14. To design inverting amplifier using Op-amp (741,351) and study	
	its frequency response	
	15. To design non-inverting amplifier using Op-amp (741,351) &	
	study its frequency response	
	16. To study the zero-crossing detector and comparator	
	17. To add two dc voltages using Op-amp in inverting and non-	
	inverting mode	
	18. To design a precision Differential amplifier of given I/O	
	specification using Op-amp.	
	19. To investigate the use of an op-amp as a Differentiator/Integrator.	
	20. To design a circuit to simulate the solution of a 1st/2nd order differential equation.	
	1. To determine Mechanical Equivalent of Heat, J, by Callender and	
	Barne's constant flow method.	
	2. To determine the Coefficient of Thermal Conductivity of Cu by	
	Searle's Apparatus.	
	3. To determine the Coefficient of Thermal Conductivity of Cu by	
	Angstrom's Method.	
	4. To determine the Coefficient of Thermal Conductivity of a bad	
2	conductor by Lee and	60
2	5. Charlton's disc method.	00
	6. To determine the Temperature Coefficient of Resistance by	
	Platinum Resistance Thermometer (PRT).	
	7. To study the variation of Thermo-Emf of a Thermocouple with	
	Difference of Temperature of its Two Junctions.	
	8. To calibrate a thermocouple to measure temperature in a specified Range using (1) Null Method, (2) Direct measurementusing Op-	
	Amp difference amplifier and to determine Neutral	
	Temperature	
	Random number generation and its applications: mid square method	
	and multiplicative congruential method; Monte-Carlo simulations.	
3	List of exercise (using C++)	60
	• Generation of random numbers using the mid-square method and	
	multiplicative congruential method.	
	• Monte-Carlo technique to evaluate the value of Pi.	

	• Monte-Carlo technique to simulate the phenomenon of nuclear
	radioactivity.
I	Additional Mathematical Physics problems (using C++) based on:
	Dirac Delta Function, Fourier Series
	Frobenius methods and Special functions
	• Calculation of error for each data point of observations recorded
	in experiments done earlier
	• Calculation of least square fitting manually without giving
	weightage to error.
	• Compute the nth roots of unity for n = 2, 3, and 4.
	• Find the two square roots of $-5+12j$.
	TEXT BOOKS
	ra, C.L. 2015. B.Sc. Practical Physics. II Edition. New Delhi: S. Chand & Co. Igrahi, S. and Mallick, B. 2015. Engineering Practical Physics. I Edition. New Delhi:
	gage Learning India.
	tash, I. and Ramakrishna. 2011. A Text Book of Practical Physics. I Edition. New

- Prakash, I. and Ramakrishna. 2011. A Text Book of Practical Physics. I Edition. New Delhi: Kitab Mahal.
- Chandra, S. 2005. Computer Applications in Physics. II Edition. New Delhi: Narosa Publication House.
- Verma R.C., Ahluwalia, P.K., Sharma, K.C. 2000. Computational Physics. I Edition. New Delhi: New Age International Publishers.
- Balagurusamy E. 2015. Object Oriented Programming with C++. VI Edition. New Delhi: McGraw Hill Ed. (India).

Scheme	Name of the subject:	L	Т	Р	С	Semester	Contact
Version:						:	Hours per
	Mathematical					IV	Week:
	Physics-III						3+1
2023-28		3	1	0	4		Total
2023 20							Hours:
							45+15
Subject	Applicable to	Evaluation		30	Exam	ination Dur	ation:
Code:	Program:	(Total	CIE	Marks		s (Theory)	
SBS	Integrated B.Sc.	Marks:		70		quisite of Co	ourse:
PHY 03	M.Sc. (Physics)	100)	TEE	Marks		evel Mathen	
401 CC	, , , , , , , , , , , , , , , , , , ,	/				of Mathema	
3104						s-I and II	
Course	This course aims at pr	oviding know	ledge of	differer			Partial
Descripti	Differential Equations a	-	-		-		
on	1	I I I I I I I I I I I I I I I I I I I		J			
	 Training in m 	athematical to	ools like	e calcul	us, inte	egration, ser	ries solution
Course	approach, specia	al function wil	ll prepare	e the stud	dent to a	solve ODE, I	PDE's which
Objectiv	model physical	phenomena.					
es	• The student sha	ll develop an	understa	inding of	f how to	o model a gi	ven physical
	phenomenon su	ch as pendulur	n motior	, rocket	motion,	stretched str	ing, etc., into
	set of ODE's, P	DE's and solve	e them.				
	• These skills will	l help in under	standing	the beha	aviour o	f the modelle	ed system/s.
	After completion of this	s course, stude	nts woul	d be able	e to:		
	• Learn about the	-				. .	
Course	Legendre polyn	-	-	•			
Outcome	differential equa						
S	as in quantum n						
	• Learn the beta,	gamma and the	e error fu	inctions a	and thei	r application	s in doing
	integrations.						
	Acquire knowle	•		-		-	ns with the
	examples of imp	=		_	ions in	Physics.	
		COURSE S	SYLLA	BUS			
Unit No.		Content of l	Each Un	it			Hours of
							Each Unit
4							
1							

Mathematical Physics–III

First Order and Second Order Differential equations: First Order Differential Equations and Integrating Factor. Homogeneous Equations with constant coefficients. Wronskian and general solution. Statement of existence and Uniqueness Theorem for Initial Value Problems. Particular Integral. Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. 15 Partial Differential Equations: Solutions to partial differential equations, using separation of variables: Solutions of Laplace's Equation and wave equation. 15 Frobenius Method and Special Functions: Singular Points of Second Order Linear Differential Equations. Legendre, Bessel, Hermite and Laguerre Differential Equations. Properties of Legendre Polynomials: Rodrigues Formula, Generating Function, Orthogonality. Simple recurrence relations. Expansion of function in a series of Legendre Polynomials. Bessel Functions of the First Kind: Generating Function, simple recurrence relations. Zeros of Bessel Functions (Jo(x) and J1(x)) and Orthogonality 15 Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. Error Function (Probability Integral). 15 3 Fourier Series : Periodic functions. Orthogonality of sine and cosine functions with arbitrary period. of non-periodic functions over an interval. Even and odd functions and their Fourier expansion. Application. Summing of Infinite Series. Term-by-Term differentiation and integrating theorem. Fourier Transforms: Fourier transforms: Fourier Integral. 15 4 Inverse Fourier transform. Properties of Fo	r		
and inexact differentials. Integrating factor, with simple illustration. 15 Partial Differential Equations: Solutions to partial differential equations, using separation of variables: Solutions of Laplace's Equation and wave equation. 15 Frobenius Method and Special Functions: Singular Points of Second Order Linear Differential Equations and their importance. Frobenius method and its applications to differential equations. Legendre, Bessel, Hermite and Laguerre Differential Equations. Properties of Legendre Polynomials: Rodrigues Formula, Generating Function, Orthogonality. Simple recurrence relations. Expansion of function in a series of Legendre Polynomials. Bessel Functions of the First Kind: Generating Function, simple recurrence relations. Zeros of Bessel Functions (Jo(x) and J1(x)) and Orthogonality 15 Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. Error Function (Probability Integral). 15 Fourier Series : Periodic functions. Orthogonality of sine and cosine functions in a series of sine and cosine functions of sourier coefficients. Complex representation of Fourier expansion of functions over an interval. Even and odd functions and their Fourier expansions. Application. Summing of Infinite Series. Term-by-Term differentiation and integrals theorem. Fourier Transforms: Fourier transform of trigonometric, Gaussian, finite wave train & other functions. Representation of Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transforms: Fourier transform of derivatives, Inverse Fourier transform integral. Fourier transform of derivatives, Inverse		Differential Equations and Integrating Factor. Homogeneous Equations with constant coefficients. Wronskian and general solution. Statement of existence and Uniqueness Theorem for Initial Value Problems. Particular	
equations, using separation of variables: Solutions of Laplace's Equation and wave equation. Frobenius Method and Special Functions: Singular Points of Second Order Linear Differential Equations and their importance. Frobenius method and its applications to differential equations. Legendre, Bessel, Hermite and Laguerre Differential Equations. Properties of Legendre Polynomials: Rodrigues Formula, Generating Function, Orthogonality. Simple recurrence relations. Expansion of function in a series of Legendre Polynomials. Bessel Functions of the First Kind: Generating Function, simple recurrence relations. Zeros of Bessel Functions (Jo(x) and J1(x)) and Orthogonality 15 Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. Error Function (Probability Integral). 15 Fourier Series : Periodic functions. Orthogonality of sine and cosine functions, DirichletConditions (Statement only). Expansion of periodic functions with arbitrary period. of non-periodic functions over an interval. Even and odd functions and their Fourier expansions. Application. Summing of Infinite Series. Term-by-Term differentiation and integrals Transforms: Fourier Transform. 15 4 Inverse Fourier Integrals Transforms: Fourier transform of trigonometric, Gaussian, finite wave train & other functions. Representation of Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Properties of Fourier Transform (Modulation and Convolution). Three dimensional Fourier 15			15
Order Linear Differential Equations and their importance. Frobenius method and its applications to differential equations. Legendre, Bessel, Hermite and Laguerre Differential Equations. Properties of Legendre Polynomials: Rodrigues Formula, Generating Function, Orthogonality. Simple recurrence relations. Expansion of function in a series of Legendre Polynomials. Bessel Functions of the First Kind: Generating Function, simple recurrence relations. Zeros of Bessel Functions (Jo(x) and J1(x)) and Orthogonality15Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. Error Function (Probability Integral).15Fourier Series : Periodic functions. Orthogonality of sine and cosine functions, DirichletConditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients. Complex representation of Fourier expansions. Application. Summing of Infinite Series. Term-by-Term differentiation and integrals of Fourier Series. Parseval Identity. Fourier Transforms: Fourier Integral theorem. Fourier transform of trigonometric, Gaussian, finite wave train & other functions. Representation of Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Properties of Fourier transforms (translation, change of scale, complex conjugation, shifting, Modulation and Convolution). Three dimensional Fourier15		equations, using separation of variables: Solutions of Laplace's Equation	
functions, DirichletConditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of3Fourier coefficients. Complex representation of Fourier series. Expansion of functions with arbitrary period. of non-periodic functions over an interval. Even and odd functions and their Fourier expansions. Application. Summing of Infinite Series. Term-by-Term differentiation and integration of Fourier Series. Parseval Identity. Fourier Transforms: Fourier Integral theorem. Fourier Transform.Fourier Integrals Transforms: Gaussian, finite wave train & other functions. Representation of Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Properties of Fourier transforms (translation, change of scale, complex conjugation, shifting, Modulation and Convolution). Three dimensional Fourier15	2	 Order Linear Differential Equations and their importance. Frobenius method and its applications to differential equations. Legendre, Bessel, Hermite and Laguerre Differential Equations. Properties of Legendre Polynomials: Rodrigues Formula, Generating Function, Orthogonality. Simple recurrence relations. Expansion of function in a series of Legendre Polynomials. Bessel Functions of the First Kind: Generating Function, simple recurrence relations. Zeros of Bessel Functions (Jo(x) and J1(x)) and Orthogonality Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. 	15
Fourier Integrals Transforms: Fourier transform of trigonometric, Gaussian, finite wave train & other functions. Representation of Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Properties of Fourier transforms (translation, change of scale, complex conjugation, shifting, Modulation and Convolution). Three dimensional Fourier	3	functions, DirichletConditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients. Complex representation of Fourier series. Expansion of functions with arbitrary period. of non-periodic functions over an interval. Even and odd functions and their Fourier expansions. Application. Summing of Infinite Series. Term-by-Term differentiation and integration of Fourier Series. Parseval Identity. Fourier Transforms:	15
Transforms with examples. Application of Fourier Transforms to	4	Fourier Integrals Transforms: Fourier transform of trigonometric, Gaussian, finite wave train & other functions. Representation of Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Properties of Fourier transforms (translation, change of scale, complex conjugation, shifting, Modulation and Convolution). Three dimensional Fourier	
		realision of round transforms to	

Differential equations: One dimensional Wave and Diffusion/Heat Flow Equations.

Laplace Transforms: Laplace Transform (LT) of Elementary functions. Properties of LTs: Change of Scale Theorem, Shifting Theorem. LTs of 1st and 2nd order Derivatives and Integrals of Functions, Derivatives and Integrals of LTs. LT of Unit Step function, Dirac Delta function, Periodic Functions. Convolution Theorem. Inverse LT. Application of Laplace Transforms to 1st and 2nd order Differential Equations: Damped Harmonic Oscillator, Simple Electrical Circuits, Coupled differential equations of 1st order. Solution of heat flow along aninfinite bar using Laplace transform.

TEXT BOOKS

- Mathematical Methods for Physicists: Arfken, Weber, 2005, Harris, Elsevier.
- Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill.
- Mathematics for Physicists, Susan M. Lea, 2004, Thomson Brooks/Cole.
- Differential Equations, George F. Simmons, 2006, Tata McGraw-Hill.
- Partial Differential Equations for Scientists & Engineers, S.J. Farlow, 1993, Dover Pub.
- Engineering Mathematics, S.Pal and S.C. Bhunia, 2015, Oxford University Press
- Mathematical methods for Scientists & Engineers, D.A. McQuarrie, 2003, Viva Books

Elements of Modern Physics

Scheme	Name of the subject:	L	Т	Р	С	Semester:	Contact		
Version	Elements of Modern					IV	Hours		
:	Elements of Modern						per		
	Physics						Week:		
						-	3+1		
		3	1	0	4		Total		
2023-28							Hours:		
C. L	A			20	D		45+15		
Subject	Applicable to	Evaluatio	CIE	30 Marilar		ination Dura	tion:		
Code:	Program:	n (Tratal	CIE	Marks		rs (Theory)			
SBS	Integrated B.Sc.	(Total		70		quisite of Co	urse:		
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	None				
402 CC		100)							
3104 Course	This service sizes of group	المانية من المراجعة من الم	dae of C			atomticl muchle	and the sum of the sum		
	This course aims at prove	-	-		-	-			
Descrip tion	states and scattering and	elementary I	ntroduct	ion of nuc	lear phy	sics with emp	onasis on		
uon	(i) Nuclear Structure								
	(ii) Nuclear Forces								
	(iii) Nuclear Decays								
	(iv) Fission and Fusion								
Course	To Comprehe	end the failur	e of class	sical physi	cs and r	need for quant	um physics.		
Objecti	• To Grasp the	basic found	ation of	various e	xperime	ents establishi	ng the		
ves	quantum phys	sics by doing	the expe	riments in	laborat	ory and interp	reting them.		
	To Formulate	the basic the	eoretical	problems	in one, t	wo and three	dimensional		
	physics and solve them.								
<u> </u>	After completion of this	course, stude	ents wou	ld be able	to:				
	-								
	• Know main aspe		-						
Course	historical development of quantum mechanics and ability to discuss and interpret						nd interpret		
Outcom	experiments that				ts, wave packets and uncertainty				
es		neory of quar	ntum me	asurement					
•••	principle.	_							
	• Understand the c	-	-						
	momentum and e			-	-	-			
	time independent								
	skill developmen	-	-	-		-	tunneling		
	through potential barrier, step potential, rectangular barrier.								

	forces and structure of atomic nucleus, liquid drop model and nuclear model and mass formula.	shell
	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours o Each Un
1	 Planck's Postulate, and wave and particle like properties of radiation: Relation of quantum physics to classical physics: Theory of cavity radiation, Planck's quantum, Planck's constant and light as a collection of photons; Blackbody Radiation: Quantum theory of Light; Photo-electric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson- Germer experiment. Wave description of particles by wave packets. Group and Phase velocities and relation between them. Two-Slit experiment with electrons. Probability. Wave amplitude and wave functions. Heisenberg uncertainty principle and Schrodinger theory: Position 	15
2	measurement- gamma ray microscope thought experiment; Wave-particle duality, Heisenberg uncertainty principle (Uncertainty relations involving Canonical pair of variables): Derivation from Wave Packets impossibility of a particle following a trajectory; Estimating minimum energy of a confined particle using uncertainty principle; Energy-time uncertainty principle- application to virtual particles and range of an interaction.Two slit interference experiment with photons, atoms and particles; linear superposition principle as a consequence; Matter waves and wave amplitude; Schrodinger equation for non-relativistic particles; Momentum and Energy operators; stationary states; physical interpretation of a wave function, probabilities and normalization; Probability and probability current densities in one dimension.	15
3	 Solution of Schrodinger equation for one dimensional problems: One dimensional infinitely rigid box- energy eigenvalues and eigenfunctions, normalization; Quantum dot as example; Quantum mechanical scattering and tunnelling in one dimension-across a step potential & rectangular potential barrier. Lasers: Einstein's A and B coefficients. Metastable states. Spontaneous and Stimulated emissions. Optical Pumping and Population Inversion. Three-Level and Four-Level Lasers. Ruby Laser and He-Ne Laser. 	15

Nuclear models: Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, Liquid Drop model: semi-empirical mass formula and binding energy, Nuclear Shell Model and magic numbers. Radioactivity: stability of the nucleus; Law of radioactive decay; Mean life and half-life; Alpha decay; Beta decay- energy released, spectrum and 4 15 Pauli's prediction of neutrino; Gamma ray emission, energy-momentum conservation: electron-positron pair creation by gamma photons in the vicinity of a nucleus. Fission and fusion: mass deficit, relativity and generation of energy; Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions driving stellar energy (brief qualitative discussions) **TEXT BOOKS** • Quantum Mechanics, Robert Eisberg and Robert Resnick, 2nd Edn., 2002, Wiley. • Concepts of Modern Physics, Arthur Beiser, 2002, McGraw-Hill. • Introduction to Modern Physics, Rich Meyer, Kennard, Coop, 2002, Tata McGraw Hill • Introduction to Quantum Mechanics, David J. Griffith, 2005, Pearson Education. • Physics for scientists and Engineers with Modern Physics, Jewett and Serway, 2010, Cengage Learning. • Quantum Mechanics: Theory & Applications, A.K.Ghatak & S.Lokanathan, 2004, Macmillan • The Picture Book of Quantum Mechanics, S. Brandt and H. D. Dahmen, 2012, Springer; 4th edn • Modern Physics, J.R. Taylor, C.D. Zafiratos, M.A. Dubson, 2004, PHI Learning. • Theory and Problems of Modern Physics, Schaum's outline, R. Gautreau and W. Savin, 2nd Edn, Tata McGraw-Hill Publishing Co. Ltd. • Quantum Physics, Berkeley Physics, Vol.4. E.H.Wichman, 1971, Tata McGraw-Hill Co. • Basic ideas and concepts in Nuclear Physics, K.Heyde, 3rd Edn., Institute of Physics Pub. • Six Ideas that Shaped Physics: Particle Behave like Waves, T.A.Moore, 2003, McGraw Hill • Quantum Mechanics, J. L. Powell and B. Crasemann, Dover Publications, 2015.

Digital Systems and Applications

Scheme Version:	Name of the subject:	L	Т	Р	C	Semester: IV	Contact Hours			
	Digital Systems and Applications						per Week:			
2023-28							3+1			
		3	1	0	4		Total			
							Hours: 45 + 15			
Subject	Applicable to	Evaluatio		30	Evom	ination Durat				
Subject Code:	Applicable to Program:	Evaluatio n	CIE	Marks		s (Theory)	.1011;			
SBS	Integrated B.Sc.	(Total		70		quisite of Cou	rse.			
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	None	quisite of Cou	1150.			
403 CC		100)	TEE	Marks	rtone					
3104		_ = = =)								
Course	This course aims to pro-	vide a compl	ete insig	ht into the	modern	design of dig	ital systems			
Descripti	fundamentals from an e									
on	foundation for the desig	n of complex	x digital	systems.						
Course	 To know about 	out the basic	laborato	ry equipm	ent elec	tronics.				
Objectiv	 To understar 	nd basic digit	tal electr	onics cond	cepts an	d devices.				
es	• To analyze of	•								
C	After completion of this course, students would be able to:									
Course	• Identify and understand digital electronic principles and systems.									
Outcome	• Apply the knowledge to analyze and apply digital circuits in solving c									
S	level problems.									
	• Build real life a	oplications u	sing digi	tal system	s.					
		COURSE	SYLLA	BUS						
Unit No.		Content	of Each	Unit			Hours			
							of Each			
							Unit			
	Digital Circuits: Diffe									
	introduction to Active & Passive components, Discrete components Wafer.									
	Chip. Advantages and drawbacks of ICs. Binary Numbers. Decimal to Binary									
	and Binary to Decimal Conversion. BCD, Octal and Hexadecimal numbers.									
1	-		es (realization using Diodes and Transistor). NAND							
1	and NOR Gates as Universal Gates. XOR and XNOR Gates and application									
, ,	as Parity Checkers. Boolean algebra: De Morgan's Theorems, Boolean Laws, Simplification of									
	Boolean algebra: De N	Iorgan'e The	Boolean algebra: De Morgan's Theorems. Boolean Laws. Simplification of Logic Circuit using Boolean Algebra. Fundamental Products. Idea of							
	-	-				-				
	Logic Circuit using I	Boolean Alg	gebra. F	undamenta	al Prod	ucts. Idea of				
	Logic Circuit using I Minterms and Maxterm	Boolean Alg s. Conversio	gebra. F	undamenta ruth table	al Prod into Equ	ucts. Idea of uvalent Logic				
	Logic Circuit using I Minterms and Maxterm Circuit by (1) Sum of P	Boolean Alg s. Conversio roducts Meth	gebra. F on of a T nod and (undamenta ruth table (2) Karnau	al Prod into Equ Igh Map	ucts. Idea of aivalent Logic				
2	Logic Circuit using I Minterms and Maxterm	Boolean Alg s. Conversion roducts Meth Binary Ad	bebra. F on of a T nod and d dition.	undamenta ruth table (2) Karnau Binary S	al Prod into Equigh Map ubtracti	ucts. Idea of uvalent Logic on using 2's				

	Data processing circuits: (a) Basic idea of Multiplexers, De-multiplexers,	
	Decoders, Encoders.	
	Sequential Circuits: SR, D, and JK Flip-Flops. Clocked (Level and Edge	
	Triggered) Flip-Flops. Preset and Clear operations. Race-around conditions	
	in JK Flip-Flop. M/S JK Flip-Flop	
	Timers: (a) IC 555: block diagram and applications: Astable multivibrator	
	and Monostable multivibrator.	
	Shift registers: (a) Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-	
	Serial-out and Parallel-in-Parallel-out Shift Registers (only up to 4 bits).	
3	Counters (4 bits): (a) Ring Counter. Asynchronous counters, Decade	15
	Counter. Synchronous Counter.	
	Computer Organization: (a) Input/Output Devices. Data storage (idea of	
	RAM and ROM). Computer memory. Memory organization & addressing.	
	Memory Interfacing. Memory Map	
	Intel 8085 Microprocessor Architecture: Main features of 8085. Block	
	diagram. Components. Pin-out diagram. Buses. Registers. ALU. Memory.	
	Stack memory. Timing & Control circuitry. Timing states. Instruction cycle,	
4	Timing diagram of MOV and MVI.	15
	Introduction to Assembly Language: 1 byte, 2 byte & 3 byte instructions.	
	Conversion: Resistive network (Weighted and R-2R Ladder). Accuracy and	
	Resolution. A/D Conversion (successive approximation)	
	TEXT BOOKS	
• Di	gital Fundamentals, 11/e Thomas L. Floyd, 2015, Pearson.	
• Di	gital Principles and Applications, A.P. Malvino, D.P.Leach and Saha, 7th Ed., 2	011, Tata
Μ	cGraw	
• Fu	undamentals of Digital Circuits, Anand Kumar, 2nd Edn, 2009, PHI Learning Pv	t. Ltd.
	gital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.	
	gital Electronics G K Kharate ,2010, Oxford University Press	
		amina
	gital Systems: Principles & Applications, R.J.Tocci, N.S.Widmer, 2001, PHI Le	annig
	ogic circuit design, Shimon P. Vingron, 2012, Springer.	
	gital Electronics, Subrata Ghoshal, 2012, Cengage Learning.	
• Di	gital Electronics, S.K. Mandal, 2010, 1 st edition, McGraw Hill	
• M	icroprocessor Architecture Programming & applications with 8085, 2002, R.S. C	Goankar,
Pr	entice Hall.	
Pr	entice Hall.	

Physics Laboratory-IV

Scheme	Name of the subject:	L	Т	Р	С	Semester:	Contact
Version:	Physics Laboratory-					IV	Hours
	I Hysics Laboratory- IV						per
	1 V						Week:
2023-28							12
		0	0	12	6		Total
							Hours:
Subject	Applicable to	Evaluatio		45	Fyom	ination Dura	180
Code:	Program:	Evaluatio n	CIE	43 Marks		s (Practical)	
SBS	Integrated B.Sc.	(Total	CIE	105		quisite of Co	
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	None	quisite of Co	uise.
404 CC	WI.Se. (I Hysics)	150)		WIAIKS	None		
00126		100)					
#		List of Ex	perime	nts			Hours
1	 To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO. To test a Diode and Transistor using a Multimeter. To design a switch (NOT gate) using a transistor. To verify and design AND, OR, NOT and XOR gates using NAND gates. To design a combinational logic system for a specified Truth Table. To convert a Boolean expression into logic circuit and design it using logic gate ICs. To minimize a given logic circuit. Half Adder, Full Adder and 4-bit binary Adder. Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C. To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates. To build JK Master-slave flip-flop using Flip-Flop ICs To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram. To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop ICs. To design an astable multivibrator of using 555 Timer. To design a monostable multivibrator using 505 Timer. Write the following programs using 8085 Microprocessor 						60

2	 f) Use of CALL and RETURN Instruction. g) Block data handling. h) Other programs (e.g. Parity Check, using interrupts, etc.). 1. Measurement of Planck's constant using black body radiation and photo-detector 2. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photo-electrons versus frequency of light 3. To determine work function of material of filament of directly heated vacuum diode. 4. To determine the Planck's constant using LEDs of at least 4 different colours. 5. To determine the wavelength of H-alpha emission line of Hydrogen atom. 6. To determine the ionization potential of mercury. 7. To determine the absorption lines in the rotational spectrum of Iodine vapour. 8. To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet. 9. To setup the Millikan oil drop apparatus and determine the charge of an electron. 10. To show the tunneling effect in tunnel diode using I-V characteristics. 11. To determine the wavelength of laser source using diffraction of single slit. 12. To determine the wavelength of laser source using diffraction of double slits. 13. To determine (1) wavelength and (2) angular spread of He-Ne laser using plane diffraction grating 	60
3	Introduction to Numerical computation software Scilab: Introduction to Scilab, Advantages and disadvantages, Scilab environment, Command window, Figure window, Edit window, Variables and arrays, Initialising variables in Scilab, Multidimensional arrays, Subarray, Special values, Displaying output data, data file, Scalar and array operations, Hierarchy of operations, Built in Scilab functions, Introduction to plotting, 2D and 3D plotting, Branching Statements and program design, Relational & logical operators, the while loop, for loop, details of loop operations, break & continue statements, nested loops, logical arrays and vectorization, User defined functions. Introduction to Scilab functions, Variable passing in Scilab, optional arguments, preserving data between calls to a function, Complex and Character data, string function, Multidimensional arrays; An	60

introduction to Scilab file processing, file opening and closing, Binary I/O functions, comparing binary and formatted functions, Numerical methods and developing the skills of writing a program.					
 Exercises (using Scilab) based on: Curve fitting, Least square fit, Goodness of fit, standard deviation Solution of Linear system of equations by Gauss elimination method and Gauss Seidal method. Diagonalization of matrices, Inverse of a matrix, Eigen vectors, eigen values problems. Generation of Special functions using and User defined functions in Scilab Solution of ODE First Order Differential equation Euler, modified Euler and Runge-Kutta second order methods, Second order differential equations 					
TEXT BOOKS					
• Arora, C.L. 2015. B.Sc. Practical Physics. II Edition. New Delhi: S. Chand & Co.					

- Panigrahi, S. and Mallick, B. 2015. Engineering Practical Physics. I Edition. New Delhi: Cengage Learning India.
- Prakash, I. and Ramakrishna. 2011. A Text Book of Practical Physics. I Edition. New Delhi: Kitab Mahal.
- Scilab by example: M. Affouf 2012, ISBN: 978-1479203444
- Scilab (A free software to Matlab): H.Ramchandran, A.S.Nair. 2011 S.Chand & Company
- Scilab Image Processing: Lambert M. Surhone. 2010 Betascript Publishing
- www.scilab.in/textbook_companion/generate_book/291

Quantum Mechanics and Applications

Scheme Version:	Name of the subject: Quantum Mechanics	L	T	Р	С	Semester: V	Contact Hours
	and Applications						per Week: 3 + 1
2023-28		3	1	0	4		Total
2020 20							Hours:
							45+15
Subject	Applicable to	Evaluatio		30	Exam	ination Dura	tion:
Code:	Program:	n	CIE	Marks	3 hour	s (Theory)	
SBS	Integrated B.Sc.	(Total		70		quisite of Co	arse:
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks		Physics	
501 3104		100)			Mathen	natical Physic	S
		100)					
on Course Objectiv es	 independent Schrodinger equation. There will be a detailed discussion of bound states in an arbitrary potential. Quantum Theory of hydrogen-like atoms will be developed. The behavior of atoms in Electric and Magnetic Fields is discussed. This course shall develop an understanding of how to model a given problem such as particle in a box, hydrogen atom, hydrogen atom in electric fields. Many electron atoms, L-S and J-J couplings. These skills will help in understanding the different Quantum Systems in atomic and nuclear physics. 						
Course Outcome s	 After completion of this course, students would be able to: After an exposition of inadequacies of classical mechanics in explaining microscopic phenomena, quantum theory formulation is introduced through Schrodinger equation. Through understanding the behavior of quantum particle encountering a i) barrier, ii) potential. Student gets exposed to solving non-relativistic hydrogen atom, and multi-electrons systems for their spectrum and eigenfunctions. Study of influence of electric and magnetic fields on atoms will help in understanding Stark effect and Zeeman Effect respectively. 						

COURSE SYLLABUS						
Unit No.	Content of Each Unit	Hours of Each Unit				
1	Time dependent Schrodinger equation: Time dependent Schrodinger equation and dynamical evolution of a quantum state; Properties of Wave Function. Interpretation of Wave Function Probability and probability current densities in three dimensions; Conditions for Physical Acceptability of Wave Functions. Normalization. Linearity and Superposition Principles. Eigenvalues and Eigenfunctions. Position, momentum and Energy operators; commutator of position and momentum operators; Expectation values of position and momentum. Wave Function of a Free Particle. Time independent Schrodinger equation-Hamiltonian, stationary states and energy eigenvalues; expansion of an arbitrary wavefunction as a linear combination of energy eigenfunctions; General solution of the time dependent Schrodinger equation in terms of linear combinations of stationary states; Application to spread of Gaussian wave-packet for a free particle in one dimension; wave packets, Fourier transforms and momentum space wavefunction; Position-momentum uncertainty principle.	15				
2	General discussion of bound states in an arbitrary potential- continuity of wavefunction, boundary condition and emergence of discrete energy levels; application to one-dimensional problem-square well potential; Quantum mechanics of simple harmonic oscillator-energy levels and energy eigenfunctions using Frobenius method; Hermite Polynomials; ground state, zero point energy & uncertainty principle.	15				
3	Quantum theory of hydrogen-like atoms: time independent Schrodinger equation in spherical polar coordinates; separation of variables for second order partial differential equation; angular momentum operator & quantum numbers; Radial wavefunctions from Frobenius method; shapes of the probability densities for ground & first excited states; Orbital angular momentum quantum numbers 1 and m; s, p, d, shells.	15				

	Many electron atoms: Pauli's Exclusion Principle. Symmetric & Antisymmetric WaveFunctions. Periodic table. Fine structure. Spin orbit coupling. Spectral Notations for Atomic States. Total angular momentum. Vector Model. Spin-orbit coupling in atoms-L-S and J-J couplings. Hund's Rule. Term symbols. Spectra of Hydrogen and AlkaliAtoms (Na, etc.).	
4	Atoms in Electric & Magnetic Fields: Electron angular momentum. Space quantization. Electron Spin and Spin Angular Momentum. Larmor's Theorem. Spin Magnetic Moment. Stern- Gerlach Experiment. Zeeman Effect. Orbital angular momentum, General Formalism of Angular Momentum, Addition of Angular Momenta, Spin Angular Momentum: Stern-Gerlach Experiment; Pauli Matrices and Spinors, Clebsch-Gordan Coefficients.	15
Ma • Pr: • Qu • Qu • Qu • Qu • Qu	TEXT BOOKS Text book of Quantum Mechanics, P.M.Mathews and K.Venkatesan, 2nd Ed cGraw Hill inciples of Quantum Mechanics, R. Shankar, Springer; 2nd ed., 2014 uantum Mechanics, Robert Eisberg and Robert Resnick, 2nd Edn., 2002, Wil uantum Mechanics, Leonard I. Schiff, 3rd Edn. 2010, Tata McGraw Hill. uantum Mechanics, G. Aruldhas, 2nd Edn. 2002, PHI Learning of India. uantum Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning. uantum Mechanics: Foundations & Applications, Arno Bohm, 3rd Edn., 1992 uantum Mechanics for Scientists & Engineers, D.A.B. Miller, 2008, Cambrid	ley. 3, Springer

Solid State Physics

Scheme Version:	Name of the subject: Solid	L	Т	Р	C	Semester: V	Contact Hours per	
2023-28	State Physics						Week: 3+1	
		3	1	0	4		Total	
							Hours:	
							45 + 15	
Subject	Applicable to	Evaluation		30		ination Durat	tion:	
Code: SBS	Program:	(Total	CIE	Marks		rs (Theory)		
PHY 03 502	Integrated	Marks:		70		quisite of Cou	irse:	
CC 3104	BSc-MSc	100)	TEE	Marks	Mode	rn Physics		
0	Physics	1 / / 1 *	· 1 ·	11 1 '		1 4 1	1 4 1' C	
Course							nderstanding of	
Description	several breakth							
	dynamics, vari- superconductivi		maning, en	ecure pola	IIZation	, lenoelectric	uomanis, and	
			damentals	of intrigui	ng nher	omena such a	s direct lattice,	
		al lattice, lattic						
	_				-	_	=	
			indamenta	is of diel	ectric,	terroelectric a	and magnetism	
Course	phenomenon in solids							
Objectives	• To make acquainted with several types of electric and magnetic materials and their							
	exciting properties							
	• To develop the scientific and positive attitudes in students related to the materials							
	science	which is a part	of solid-st	ate physics	5			
	• To able	the students for	r solve the	problems	related t	to solid state pl	hysics	
	At the end of th	is course, the s	tudents wi	ll be able t	0			
	• Identify various crystal structures and their symmetries in solids and learn the							
	basic concepts of X-ray diffraction, rotating crystal, and Laue methods.							
	• Understand the theories and phenomena of lattice dynamics, and various bonding							
Course	in solids							
Outcomes	• Explain the dielectric phenomenon in crystals with their exciting properties and							
Outcomes	learn the basics of ferroelectric crystals.							
	 Illustrate some exciting phenomena such as Meissner effect, Isotope effect, 							
London's equations, and BCS theory of superconductors.								
	• Understand the basics of high temperature superconductors and commercial							
	applications of superconductors							
		COU	RSE SYL	LABUS				
Unit No.		Con	tent of Ea	ich Unit			Hours of	
							Each Unit	
1	Crystal Struct	ure: Solids: A	morphous	and Crysta	alline M	laterials. Lattic	ce 15	

	Translation Vectors. Lattice with a Basis. Types of Lattices. Unit Cell,	
	Symmetry and Symmetry Elements. Miller Indices. Reciprocal Lattice.	
	Brillouin Zones. Diffraction of X-rays: single crystal and powder method.	
	Bragg's Law, Laue Condition. Ewalds' construction. Atomic and	
	Geometrical Factor. Simple numerical problem on SC, BCC, FCC.	
	Elementary Lattice Dynamics: Lattice Vibrations and Phonons: Linear	
	Monoatomic and Diatomic Chains. Acoustical and Optical Phonons.	
	Qualitative Description of the Phonon Spectrum in Solids. Dulong and	
2	Petit's Law, Einstein and Debye theories of specific heat of solids. T ³ law.	15
	Bonding in Solids: Interatomic forces and types of bonding (basic idea).	
	Binding energy in ionic crystals, evaluation of Madelung constant. Binding	
	energy of crystal of Inert gases.	
	Dielectric Properties of Materials: Polarization. Local Electric Field at an	
	Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius	
	Mosotti Equation. Classical Theory of Electric Polarizability. Normal and	
3	Anomalous Dispersion. Cauchy and Sellmeir relations. Langevin-Debye	15
_	equation. Ferroelectric Properties of Materials: Structural phase transition,	
	Classification of crystals, Piezoelectric effect, Pyroelectric effect,	
	Ferroelectric effect, Electrostrictive effect, Curie-Weiss Law, Ferroelectric	
	domains, PE hysteresis loop.	
	Superconductivity: Introduction to Superconductivity, Effect of Magnetic Field, The Meissner Effect, Type I and Type II Superconductors, Entropy,	
	Free Energy, Heat Capacity, Energy gap, Isotope Effect, Thermodynamics	
4	of the Superconducting Transition, London Equation and Penetration Depth,	15
	Coherence Length, BCS Theory of Superconductivity, Cooper Pair, Flux	15
	Quantization. High Temperature Superconductors (basic idea), Applications	
	of Superconductors.	
	TEXT BOOKS	
Introd	uction to Solid State Physics, Charles Kittel, 8th Edition, 2004, Wiley India Pr	vt. Ltd.
	ents of Solid State Physics, J.P. Srivastava, 4th Edition, 2015, Prentice-Hall of	
	uction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill	
	State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning	
	state Physics, H. Ibach and H. Luth, 2009, Springer	
	State Physics, Rita John, 2014, McGraw Hill	
	entary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India	
Solid	State Physics, M.A. Wahab, 2011, Narosa Publications	

Physics Laboratory-V

Scheme	Name of the subject:	L	Т	Р	C	Semester:	Contact	
Version:	Physics Laboratory-V					V	Hours	
							per	
							Week:	
2023-28		0	0	0			8	
		0	0	8	4		Total	
							Hours:	
G 1 • 4				20	Б		120	
Subject	Applicable to	Evaluatio	CIE	30 Marilar		ination Dura	ation:	
Code:	Program:	n (Tratal	CIE	Marks		rs (Practical)		
SBS	Integrated B.Sc.	(Total		70		quisite of Co	urse:	
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	None			
503 CC 0084		100)						
#		List of Ex	manima	• t a			Hours	
#		List of Ex	perimer	115			nours	
	1. Measurement of	1						
	(Quinck's Tube	Method).						
	2. To measure the							
	3. To determine the	ic						
	crystal.							
	4. To study the die	lectric respon	nse of m	aterials wi	ith frequ	ency.		
	5. To determine th	e complex di	electric	constant a	nd plasr	na		
	frequency of a n technique.	netal using S	urface P	lasmon Re	sonance	e (SPR)		
1	6. To determine th	e refractive in	ndex of	a dielectric	e materia	30		
-	SPR technique.							
	7. To study the PE	Hysteresis le	oop of a Ferroelectric Crystal.					
	8. To draw the BH	termine						
	the energy loss t							
	9. To measure the	h						
	temperature (up	etermine						
	its band gap.		-					
	10. To determine th	e Hall coeffi	cient of a	a semicon	ductor s	ample.		
	11. Analysis of X-Ray diffraction data in terms of unit cell							
	parameters and	estimation of	f particle	size.				

	12. Measurement of change in resistance of a semiconductor with magnetic field.	
2	 Study of Electron spin resonance- determine magnetic field as a function of the resonance frequency Study of Zeeman effect: with external magnetic field; Hyperfine splitting To show the tunneling effect in tunnel diode using I-V characteristics. Quantum efficiency of CCDs 	30
3	 Determine output characteristics of a LVDT & measure displacement using LVDT Measurement of Strain using Strain Gauge. Measurement of level using capacitive transducer. To study the characteristics of a Thermostat and determine its parameters. Study of distance measurement using ultrasonic transducer. Calibrate Semiconductor type temperature sensor (AD590, LM35, or LM75) To measure the change in temperature of ambient using Resistance Temperature Device (RTD). Comparison of pickup of noise in cables of different types (co- axial, single shielded, double shielded, without shielding) of 2m length, understanding of importance of grounding using function generator of mV level & an oscilloscope. To design and study the Sample and Hold Circuit.To plot the frequency response of a microphone. To measure Q of a coil and influence of frequency, using a Q- meter. 	30
4	Use C/C++/Scilab for solving the following problems based on Quantum Mechanics like I. Solve the s-wave Schrodinger equation for the ground state and the first excited state of the nydrogen atom: $\frac{dy^2}{dr^2} = A(r)u(r), \text{ where } A(r) = \frac{2m}{\hbar}[V(r) - E], \text{ and } V(r) = -\frac{e^2}{r}$ Here, m is the reduced mass of the electron. Obtain the energy eigenvalues and plot the corresponding wavefunctions. Remember that t	30

the ground state energy of the hydrogen atom is \approx -13.6 eV. Take e = $3.795 \sqrt{(eVÅ)}$, hc = 1973 (eVÅ) and m = $0.511 \times 106 \text{ eV/}c^2$. 2. Solve the s-wave radial Schrodinger equation for an atom: $\frac{dy^2}{dr^2} = A(r)u(r)$, where $A(r) = \frac{2m}{\hbar}[V(r) - E]$, where m is the reduced mass of the system (which can be chosen to be the mass of an electron), for the screened coulomb potential $V(r) = -\frac{e^2}{r}e^{(-r/a)}$. Find the energy (in eV) of the ground state of the atom to an accuracy of three significant digits. Also, plot the corresponding wavefunction. Take $e = 3.795 \sqrt{(eVÅ)}$, m = 0.511 × 10⁻⁶ eV/c², and a = 3 Å, 5 Å, 7 Å. In these units $\hbar c = 1973$ (eVÅ). The ground state energy is expected to be above -12 eV in all three cases. 3. Solve the s-wave radial Schrodinger equation for a particle of mass m: $\frac{dy^2}{dr^2} = A(r)u(r)$, where $A(r) = \frac{2m}{\hbar}[V(r) - E]$, For the anharmonic oscillator potential $V(r) = \frac{1}{2}kr^2 + \frac{1}{3}br^3$ for the ground state energy (in MeV) of a particle to an accuracy of three significant digits. Also, plot the corresponding wave function. Choose $m = 940 \text{ MeV/}c^2$, k = 100MeV fm^{-2} , b = 0, 10, 30 MeV fm^{-3} In these units, ch = 197.3 MeV fm. The ground state energy I expected to lie between 90 and 110 MeV for all three cases. 4. Solve the s-wave radial Schrodinger equation for the vibrations of hydrogen molecule: $\frac{dy^2}{dr^2} = A(r)u(r)$, where $A(r) = \frac{2\mu}{\hbar}[V(r) - E]$, Where μ is the reduced mass of the two-atom system for the Morse potential $V(r) = D\left[e^{-2\alpha r'} - e^{-\alpha r'}\right]$, $r' = \frac{r-r_0}{r}$ Find the lowest vibrational energy (in MeV) of the molecule to an accuracy of three significant digits. Also plot the corresponding wave function. Take: m = 940x106 eV/ c^2 , D = 0.755501 eV, α = 1.44, r_0 = 0.131349 Å **TEXT BOOKS**

Arora, C.L. 2015. B.Sc. Practical Physics. II Edition. New Delhi: S. Chand & Co.

- Panigrahi, S. and Mallick, B. 2015. Engineering Practical Physics. I Edition. New Delhi: Cengage Learning India.
- Prakash, I. and Ramakrishna. 2011. A Text Book of Practical Physics. I Edition. New Delhi: Kitab Mahal.
- Schaum's outline of Programming with C++. J.Hubbard, 2000,McGraw-Hill Publication
- Numerical Recipes in C: The Art of Scientific Computing, W.H. Pressetal., 3rd Edn., 2007, Cambridge University Press.
- An introduction to computational Physics, T.Pang, 2nd Edn., 2006, Cambridge Univ. Press
- Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific & Engineering Applications: A. Vande Wouwer, P. Saucez, C. V. Fernández.2014 Springer.
- Scilab (A Free Software to Matlab): H. Ramchandran, A.S. Nair. 2011 S. Chand & Co.
- A Guide to MATLAB, B.R. Hunt, R.L. Lipsman, J.M. Rosenberg, 2014, 3rd Edn., Cambridge University Press

Electromagnetic Theory

Scheme	Name of the subject:	L	Т	P	C	Semester:	Contact
Version:	Electromagnetic					VI	Hours
	Theory						per
	Theory						Week:
2022.20		3	1	0	4		3 + 1 Total
2023-28		5	1	0			Hours:
							45+15
Subject	Applicable to	Evaluatio		30	Exam	ination Dura	ation:
Code:	Program:	n	CIE	Marks	3 hour	rs (Theory)	
SBS	Integrated B.Sc.	(Total		70	Prere	quisite of Co	ourse:
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	Therm	al Physics	
601 CC		100)					
3104							
Course	This course provides Review of Maxwell's equations and discuss EM wave propagation						
Descripti	in unbounded media of various types. The polarization of electromagnetic waves, wave						
on	guides, and optical fibres are discussed in detail.						
C	• Comprehend the role of Maxwell's equation in unifying electricity and magnetism.						
Course Objectiv	• Derive and understand associated with the properties, EM wave passing through the						
es	interface between tw	vo media like	Reflect	ion, Refrac	ction, Tr	ansmission a	nd EM wave
63	• Learn the applicatio	n of EM the	ory to				
	(i) Wave gui	des of variou	s types a	and cavities	5		
	(ii) Optical fi	bers in theor	y and ex	periment			
	After completion of this	s course, stud	lents wo	uld be able	e to:		
Course	• Apply Maxwell	's equations	to dedu	ICE WAVE	equation	n electroma	metic field
Outcome	energy, moment	-			-		Shere here
s	• Understand the	0			•	calculate the	reflection
5	and transmission	n coefficients	s at plan	e interface	in bour	ded media.	
	• Understand the	inear, circula	ar and el	liptical po	larizatio	on of em wave	es.
	Production as w	ell as detecti	on of wa	aves in the	laborat	ory.	
	• Learn about opt	ical fibers an	d waveg	uides.			
		COURSE	SYLLA	ABUS			
Unit No.		Content of	É Each U	Unit			Hours of
							Each Unit

1	 Maxwell Equations: Review of Maxwell's equations. Displacement Current. Boundary Conditions at Interface between Different Media. Wave Equations. Plane Waves in Dielectric Media. Poynting Theorem and Poynting Vector. Electromagnetic (EM) Energy Density. Physical Concept of Electromagnetic Field Energy Density, Momentum Density and Angular Momentum Density. EM Wave Propagation in Unbounded Media: Plane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media, relaxation time, skin depth. Wave propagation through dilute plasma, electrical conductivity of ionized gasses, plasma frequency, refractive index, skin depth, application to propagation through ionosphere. 	15
2	 Reflection of a plane EM Wave at a planar boundary: Boundary conditions at a plane interface between two media. Reflection & Refraction of plane waves at plane interface between two dielectric media-Laws of Reflection & Refraction. Fresnel's Formulae for perpendicular & parallel polarization cases, Brewster's law. Reflection & Transmission coefficients. Total internal reflection, Metallic reflection (normal Incidence) Reflection of an evanescent EM Wave at planar boundary: Introduction to evanescent waves. Reflection & Refraction of an EM evanescent wave at plane interface between two dielectric media, Energy propagation in evanescent EM waves. 	15
3	Polarization of Electromagnetic Waves: Description of Linear, Circular and Elliptical Polarization. Propagation of E.M. Waves in Anisotropic Media. Symmetric Nature of Dielectric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half-Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light.	15
	Rotatory Polarization: Optical Rotation. Biot's Laws for Rotatory Polarization. Fresnel's Theory of optical rotation. Calculation of angle of	

	rotation. Experimental verification of Fresnel's theory. Specific rotation. Laurent's half-shade polarimeter	
4	Wave Guides and Cavities: Planar optical waveguides. Planar dielectric waveguide. Condition of continuity at interface. Phase shift on total reflection. Eigenvalue equations. Phase and group velocity of guided waves. Field energy and Power transmission, Coaxial cable, Resonant Cavities, Power Losses in a Cavity; Q of a Cavity, M, propagation modes in waveguides.	15
	Optical Fibres:- Numerical Aperture. Step and Graded Indices (Definitions Only).Single and Multiple Mode Fibres	
	TEXT BOOKS	
• Introduct	ion to Electrodynamics, D.J. Griffiths, 3rd Ed., 1998, Benjamin Cummings.	
• Elements	of Electromagnetics, M.N.O. Sadiku, 2001, Oxford University Press.	
• Introduct	ion to Electromagnetic Theory, T.L. Chow, 2006, Jones & Bartlett Learning	5
• Fundame	ntals of Electromagnetics, M.A.W. Miah, 1982, Tata McGraw Hill	
Classical	Electricity and Magnetism, W. Panofsky and M. Phillips, 2012. Dover public	ications
• Principle	s of Optics, M. Born and E. Wolf, 1999, Cambridge University Press.	
• Electrom	agnetic Fields & Waves, P.Lorrain & D.Corson, 1970, W.H.Freeman & Co.	
• Electrom	agnetics, J.A. Edminster, Schaum Series, 2006, Tata McGraw Hill.	
• Evanesce	ent Waves, F. de Fornel, 2001, Springer-Verlag Berlin Heidelberg	
• Understa	nding energy propagation during reflection of an evanescent electromagnetic	c wave:
Am. J. Ph	ys., 89, 877 (2021)	
Microwa	ve Devices and Circuits, Samuel Y. Liao, Pearson Education India; 3rd edu	, 2003

Statistical Mechanics-I

Scheme	Name of the subject:	L	Т	P	C	Semester:	Contact
Version:	Statistical Mechanics					VI	Hours
	Statistical meenames						per
							Week: 3 + 1
2023-28		3	1	0	4	-	Total
2023-20							Hours:
							45+15
Subject	Applicable to	Evaluatio		30	Exam	ination Dura	ation:
Code:	Program:	n	CIE	Marks	3 hour	rs (Theory)	
SBS	Integrated B.Sc.	(Total					
PHY 03	M.Sc. (Physics)	Marks:		70	Prere	quisite of Co	ourse:
602 CC		100)	TEE	Marks	Therm	nal Physics	
3104							
Course	This course introduces	the technique	es of stat	tistical me	chanics	which has be	road and rich
Descripti	applications in various fields including quantum mechanics, condensed matter physics,						
on	classical mechanics, ast	rophysics, bi	io-physic	cs, electro	dynamic	cs, etc.	
Course	• To understand the tags of tags o	ne fundamen	tals of st	atistical n	nechanic	S	
Objectiv	• To make familia	ar with vario	us statis	tical mech	nanics te	erms such as	entropy, free
es	energy, phase sp	pace, statistic	cal enser	nbles, Bos	se-Einste	ein statistics,	Fermi-Dirac
•••	statistics etc.						
	• To understand the	he basic aspe	ects of th	eory of ra	diation		
	• To able the stud	ents for solve	e the pro	blems rela	ated to s	tatistical med	chanics
	At the end of this course						
~	• Understand the				· •	1	•
Course	probability, part					• -	•
Outcome	partition function		te the the	hermodyn	amic va	riables for i	deal gas and
S	finite level syste						
	• Illustatre the fun		-				
	• Apply FD and E			-	roblems	s (electron in	solids, white
	dwarf blackbod	·		-			
	• Understand the				h therma	al radiation.	
		COURSE	SYLLA	BUS			
Unit No.		Content of	Each U	J nit			Hours of
							Each Unit

1	Classical Statistics: Macrostate & Microstate, Elementary Concept of Ensemble, Phase Space, Entropy and Thermodynamic Probability, Maxwell-Boltzmann Distribution Law, Partition Function, Thermodynamic Functions of an Ideal Gas, Classical Entropy Expression, Gibbs Paradox, Sackur Tetrode equation, Law of Equipartition of Energy (with proof) – Applications to Specific Heat and its Limitations, Thermodynamic Functions of a Two-Energy Levels System, Negative Temperature.	15
2	Bose-Einstein Statistics: B-E Distribution law, Thermodynamic functions of a strongly degenerate Bose Gas, Bose Einstein condensation, properties of liquid He (qualitative description), Radiation as a photon gas and Thermodynamic functions of photon gas. Bose derivation of Planck's law.	15
3	Fermi-Dirac Statistics: Fermi-Dirac Distribution Law, Thermodynamic functions of a Completely and strongly degenerate Fermi Gas, Fermi Energy Electron gas in a Metal, Specific Heat of Metals, Relativistic Fermi gas, White Dwarf Stars, Chandrasekhar Mass Limit.	15
4	Theory of Radiation: Properties of Thermal Radiation and Radiation Pressure. Blackbody Radiation and its spectral distribution. Kirchhoff law. Stefan-Boltzmann law and its Thermodynamic proof. Wien's Displacement law. Wien's Distribution Law. Rayleigh-Jean's Law. Ultraviolet Catastrophe. Planck's Quantum Postulates. Planck's Law of Blackbody Radiation Deduction of Wien's Distribution Law, Rayleigh- Jeans Law, Stefan-Boltzmann Law and Wien's Displacement law from Planck's law.	12
U • S • S • T G • M • A	TEXT BOOKS tatistical Mechanics, R.K. Pathria, Butterworth Heinemann: 2 nd Ed., 1996, C Iniversity Press. tatistical Physics, Berkeley Physics Course, F. Reif, 2008, Tata McGraw-Hill tatistical and Thermal Physics, S. Lokanathan and R.S. Gambhir. 1991, Prent thermodynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Berhard L. Salinger, 1986, Narosa. Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Sp an Introduction to Statistical Mechanics & Thermodynamics, R.H. Swendsen, Dxford Univ. Press	ice Hall Sears and pringer

Physics Laboratory-VI

Scheme Version:	Name of the subject: Physics Laboratory- VI	L	Т	Р	C	Semester: VI	Contact Hours per Week:
2023-28		0	0	8	4		8 Total Hours: 120
Subject	Applicable to	Evaluatio		30	Exam	ination Dur	ation:
Code:	Program:	n	CIE	Marks	3 hour	rs (Practical)	
SBS	Integrated B.Sc.	(Total		70	Prere	quisite of Co	ourse:
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	None		
603 CC		100)					
0084							
#		List of Ex	perimer	nts			Hours
1	 To determine the spe To analyze elliptic compensator. To study dependence To determine the we liquid (Kerosene Oil, ultrasonic grating. To study the reflection To study Polarization To determine the reflusing Wollaston's ain To determine the reflusing angle for a To verify the Stefan' constant. To determine the Bol PN junction diode 	cally polariz of radiation avelength an Xylene, etc. on, refraction and double ractive index rfilm. ractive Index ing a Gaussia zation of lig airglass interf s law of radia	ed Lig on angle d veloci) by stud of micro slit inter of liqui of (1) g an eyepio th by ro face. ation and	ht by us for a simp ity of ultra dying the o owaves ference in d by total glass and (ece. eflection a l to determ	sing a ble Dipo asonic v diffraction microw internal 2) a liqu and deter hine Ste	Babinet's le antenna. waves in a on through vaves. reflection hid by total ermine the fan's	90

	Use C/C++/Scilab/Python and other numerical simulations for solving the problems based on Statistical Mechanics like						
	1. Plot Planck's law for Black Body radiation and compare it with Wein's Law and Raleigh-Jeans Law at high temperature (room temperature) and low temperature.						
2	 2. Plot Specific Heat of Solids by comparing (a) Dulong-Petit law, 30 (b) Einstein distribution function, (c) Debye distribution function for high temperature (room temperature) and low temperature and compare them for these two cases. 						
	3. Plot Maxwell-Boltzmann distribution function versus temperature.						
	4. Plot Fermi-Dirac distribution function versus temperature.						
	5. Plot Bose-Einstein distribution function versus temperature.						
	TEXT BOOKS						
• Panigra	C.L. 2015. B.Sc. Practical Physics. II Edition. New Delhi: S. Chand & Co. hi, S. and Mallick, B. 2015. Engineering Practical Physics. I Edition. New D	Delhi:					
Prakasł	ge Learning India. n, I. and Ramakrishna. 2011. A Text Book of Practical Physics. I Edition. Ne [.] Kitab Mahal.	W					
	tary Numerical Analysis, K.E. Atkinson, 3rd Edn. 2007, Wiley India Editior	1.					
• Elemer							
	cal Mechanics, R.K. Pathria, Butterworth Heinemann: 2nd Ed., 1996,	Oxford					
Statisti	cal Mechanics, R.K. Pathria, Butterworth Heinemann: 2nd Ed., 1996, sity Press.	Oxford					
Statistic Univers							
 Statistic University Thermody Gerhard Modern 	sity Press. odynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Se	ears and er.					
 Statistic University Thermody Gerhand Modern Simula Engine 	sity Press. odynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Se d L. Salinger, 1986, Narosa. n Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Spring	ears and er. Scientific and					

DSE PAPERS

Experimental Techniques

Scheme	Name of the subject:	L	Т	Р	C	Semester:	Contact		
Version:	Experimental					V	Hours		
	Techniques						per		
	reeninques						Week:		
2023-28			4		-		5 + 1		
		5	1	0	6		Total		
							Hours: $(0 + 15)$		
							60 + 15		
Subject	Applicable to	Evaluatio		45	Exam	ination Dura	tion:		
Code:	Program:	n	CIE	Marks	3 hour	s (Theory)			
SBS	Integrated B.Sc.	(Total							
PHY 03	M.Sc. (Physics)	Marks:		105	Prere	quisite of Cou	irse:		
501 DS		150)	TEE	Marks	Know	ledge of basic	electronics		
5106									
Course	This course aims at pro	U	U	•	-		• 1		
Descripti	errors and statistical an	=		-	-				
on	types of noises, Electro	-			-				
	Different types of tran			, Digital 1	nultime	ter and Vacuu	um systems		
	including ultrahigh vacu	um systems	•						
	• Develop ski	lls to analys	e data.	make app	roximat	ion and perfo	orm error		
	• Develop skills to analyse data, make approximation and perform error analysis using basic methods of statistics.								
	-	-			their ap	plication and s	study of the		
Course	efficiency.	• •	-			-	·		
Objectiv	 Develop und 	lerstanding o	f analog	and digita	l instrun	nents and earn	to use them		
es	in making pl	nysical meas	urement	s.					
	• Develop the	ir understan	ding of	signal, no	oise, and	d fluctuations	in making		
	physical mea	asurements.							
	• Understandi	ng of Impeda	ances Br	idges, Q n	neters as	s well as vacu	um systems		
	using variou	· · ·	-	-					
Course	After completion of this	s course, stud	lents wo	uld be abl	e to:				
Outcome	• About accuracy	and precision	n differ	ent types o	of errors	and statistical	analysis		
S	• About accuracy of data.	and precisio	n, unielt	in types 0	01 011018	and statistical	ana1 y 515		
	 About Noise and 	d signal, sign	al to noi	se ratio, d	ifferent	types of noise	s and their		
	identification.	6,8-				JT			

	 Concept of electromagnetic interference and necessity of groundin. About transducers and basic concepts of instrumentation-Different transducers and sensors. Working of a digital multimeter. Vacuum systems including ultrahigh vacuum systems. Conduct Experiments using different transducers including LVDT hands on experience and verify the theory. 	types of
Unit No.	Content of Each Unit	Hours of Each Unit
1	 Measurements: Accuracy and precision. Significant figures. Error and uncertainty analysis. Types of errors: Gross error, systematic error, random error. Statistical analysis of data (Arithmetic mean, deviation from mean, average deviation, standard deviation, chi-square) and curve fitting. Guassian distribution. Signals and Systems: Periodic and aperiodic signals. Impulse response, transfer functionand frequency response of first and second order systems. Fluctuations and Noise in measurement system. S/N ratio and Noise figure. Noise in frequency domain. Sources of Noise: Inherent fluctuations, Thermal noise, Shot noise, 1/f noise. Shielding and Grounding: Methods of safety grounding. Energy coupling. Grounding. Shielding: Electrostatic shielding. Electromagnetic Interference. 	19
2	Transducers & industrial instrumentation (working principle, efficiency, applications): Static and dynamic characteristics of measurement Systems. Generalized performance of systems, Zero order first order, second order and higher order systems. Electrical, Thermal and Mechanical systems. Calibration. Transducers and sensors. Characteristics of Transducers. Transducers as electrical element and their signal conditioning. Temperature transducers: RTD, Thermistor, Thermocouples, Semiconductor type temperature sensors (AD590, LM35, LM75) and signal conditioning. Linear Position transducer: Strain gauge, Piezoelectric. Inductance change transducer: Linear variable differential transformer (LVDT), Capacitance change transducers. Radiation Sensors: Principle of Gas filleddetector, ionization chamber, scintillation detector.	19

3	 Digital Multimeter: Comparison of analog and digital instruments. Block diagram of digital multimeter, principle of measurement of I, V, C. Accuracy and resolution of measurement Impedance Bridges and Q-meter: Block diagram and working principles of RLC bridge. Q-meter and its working operation. Digital LCR bridge. 	19
4	Vacuum Systems : Characteristics of vacuum: Gas law, Mean free path. Application ofvacuum. Vacuum system- Chamber, Mechanical pumps, Diffusion pump & Turbo Modular pump, Pumping speed, Pressure gauges (Pirani, Penning, ionization).	18
	TEXT BOOKS	1
 Spr Bas Gra Me 	ectronic circuits: Handbook of design and applications, U. Tietze and C. Sch ringer sic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 19 aw Hill easurement, Instrumentation and Experiment Design in Physics & Engineeri 1 A. Mansingh, 2005, PHI Learning.	990, Mc-

Biophysics

Scheme	Name of the subject:	L	Т	Р	С	Semester:	Contact
Version:	Diophysics					V	Hours
	Biophysics						per
							Week:
2023-28							5 + 1
		5	1	0	6		Total
							Hours:
							60 + 15
Subject	Applicable to	Evaluatio		45	Exam	ination Dura	tion:
Code:	Program:	n	CIE	Marks	3 hour	rs (Theory)	
SBS	Integrated B.Sc.	(Total		105	Prere	quisite of Cou	irse:
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks			
502 DS		150)					
5106							
Course	This course aims at pro-	viding know	ledge of	Molecules	s of Life	, The complex	kity of Life
Descripti	and Evolution						
on							
	•						
Course	Basic conce	pts about bio	logical p	hysics and	d evolut	ion are learned	1.
Objectiv							
es							
	After completion of this	s course, stuc	lents wo	uld be able	e to:		
	• Acquire master	v of the fun	damenta	l principle	es and a	applications o	f various
	branches of Phy	•					
	• Nuggets of therr		-	-	-		magnetism,
Course	will help in und	-				5	6 /
Outcome	• Relevance of ch	-				s in understand	ding energy
S	transfer mechan	• 1	-		•		0 00
	• He /she will ac	-		-			equations,
	analysis, and lin		1 '				
	• A basic course in	-				n basic lab skil	ls, includin
	understanding a						, ,
	• Get exposure to	-				-	ulti cellular
	organism and iii						
		,			,u		

COURSE SYLLABUS						
Unit No.	Content of Each Unit					
1	Overview: The boundary, interior and exterior environment of living cells. Processes: exchange of matter and energy with environment, metabolism, maintenance, reproduction, evolution. Self- replication as a distinct property of biological systems. Time scales and spatial scales. Universality of microscopic processes and diversity of macroscopic form. Types of cells. Multicellularity. Allometric scaling laws.	19				
2	Molecules of life: Metabolites, proteins and nucleic acids. Their sizes, types and roles in structures and processes. Transport, energy storage, membrane formation, catalysis, replication, transcription, translation, signaling. Typical populations of molecules of various types present in cells, their rates of production and turnover. Energy required to make a bacterial cell. Simplified mathematical models of transcription and translation, small genetic circuits and signaling pathways. Random walks and applications to biology. Mathematical models to be studied analytically and computationally	19				
3	The complexity of life: At the level of a cell: The numbers of distinct metabolites, genes and proteins in a cell. Complex networks of molecular interactions: metabolic, regulatory and signaling networks. Dynamics of metabolic networks; the stoichiometric matrix. Living systems as complex organizations; systems biology. Models of cellular dynamics. The implausibility of life based on a simplified probability estimate, and the origin of life problem. At the level of a multicellular organism: Numbers and types of cells in multicellular organisms. Cell types as distinct attractors of a dynamical system. Stem cells and cellular differentiation. Pattern formation and development. Brain structure: neurons and neural networks. Brain as an information processing system. Associative memory models. Memories as attractors of the neural network dynamics. At the level of an ecosystem and the biosphere: Foodwebs. Feedback cycles and self-sustaining ecosystems.	19				

4	Evolution: The mechanism of evolution: variation at the molecular level, selection at the level of the organism. Models of evolution. The concept of genotype-phenotype map. Examples.	18
	TEXT BOOKS	<u> </u>
Bic 200 Phy Fra An Edi	ysics in Molecular Biology; Kim Sneppen & Giovanni Zocchi (CUP 2005) ological Physics: Energy, Information, Life; Philip Nelson (W H Freeman &)4) ysical Biology of the Cell (2nd Edition), Rob Phillips et al (Garland Science ncis Group, London & NY, 2013) Introduction to Systems Biology; Uri Alon (Chapman and Hall/CRC, Speci tition, 2013) olution; M. Ridley (Blackwell Publishers, 2009, 3rd edition)	, Taylor &

Earth Sciences

Scheme	Name of the subject:	L	Т	Р	C	Semester:	Contact
Version:	Earth Sciences					V	Hours
	Latur Sciences						per
							Week:
2023-28							5 + 1
		5	1	0	6		Total
							Hours:
							60 + 15
Subject	Applicable to	Evaluatio		45		ination Dura	tion:
Code:	Program:	n	CIE	Marks		rs (Theory)	
SBS PHY	Integrated B.Sc.	(Total		105	Prere	quisite of Co	urse:
03 503 DS	M.Sc. (Physics)	Marks:	TEE	Marks			
5106		150)					
Course	This course aims at p	-	-				
Descripti	Dynamical Processes, E	Evolution and	l Conten	nporary di	lemmas	: Disturbing tl	he Earth
on							
Course	• Knowledge	of the place of	of Earth	in this Un	iverse a	nd its formation	on structure
Objectiv	•	-				ate the reasons	
es	Earth 'SAFE				uppreen	tte the reasons	, for keeping
63		_					
	After completion of this	s course, stud	lents wo	uld be able	e to lear	n:	
		T					1 C
	• about origin of I	· •				Ũ	und Sun, its
	satellite Moon a	-		-	-		
	• overview of the		i evoluti	on of the I	Earth as	a dynamic pla	anet within
Course	our solar system		• 1 6	1	1 1		
Outcome	• Application of p	• •	-	•			-
S	understand mod	e	0.				
-	The origin of ma	-	•		-		-
	seismic sources	-			-		
	distinctive rheol	ogical behav	iour of t	he upper r	nantle a	nd its top laye	er shall be
	understood.				_		
	• Climate and var	-	• •	•		n cycle, nitrog	en cycles in
	maintain steady			-			
	• This will enable					•	
	change, biodive	rsity loss, po	pulation	growth, et	tc.) dist	urbing the Ear	th

	• In the tutorial section, through literature survey on the various asp of Earth, project work / seminar presentation, student will be to ap to 'save' Earth.						
COURSE SYLLABUS							
Unit No.	Content of Each Unit	Hours of Each Unit					
1	 The Earth and the Universe: (a) Origin of universe, creation of elements and earth. A Holistic understanding of our dynamic planet through Astronomy, Geology, Meteorology and Oceanography. Introduction to various branches of Earth Sciences. (b) General characteristics and origin of the Universe. The Milky Way galaxy, solar system, Earth's orbit and spin, the Moon's orbit and spin. The terrestrial and Jovian planets. Meteorites & Asteroids. Earth in the Solar system, origin, size, shape, mass, density, rotational and revolution parameters and its age. (c) Energy and particle fluxes incident on the Earth. (d) The Cosmic Microwave Background. 	18					
2	 Structure: (a) The Solid Earth: Mass, dimensions, shape and topography, internal structure, magnetic field, geothermal energy. How do we learn about Earth's interior? (b) The Hydrosphere: The oceans, their extent, depth, volume, chemical composition. River systems. (c) The Atmosphere: variation of temperature, density and composition with altitude, clouds. (d) The Cryosphere: Polar caps and ice sheets. Mountain glaciers. (e) The Biosphere: Plants and animals. Chemical composition, mass. Marine and land organisms 	19					
3	Dynamical Processes: (a) The Solid Earth: Origin of the magnetic field. Source of geothermal energy. Convection in Earth's core and production of its magnetic field. Mechanical layering of the Earth. Introduction to geophysical methods of earth investigations. Concept of plate tectonics; sea- floor spreading and continental drift. Geodynamic elements of Earth: Mid Oceanic Ridges, trenches, transform faults and island arcs. Origin of oceans, continents, mountains and rift valleys. Earthquake and earthquake belts. Volcanoes: types products and distribution.	19					

	(b) The Hydrosphere: Ocean circulations. Oceanic current system and					
	effect of coriolis forces. Concepts of eustasy, tend – air-sea interaction;					
	wave erosion and beach processes. Tides. Tsunamis.					
	(c) The Atmosphere: Atmospheric circulation. Weather and climatic					
	changes. Earth's heat budget. Cyclones.					
	Climate:					
	i. Earth's temperature and greenhouse effect.					
	ii. Paleoclimate and recent climate changes.					
	iii. The Indian monsoon system.					
	(d) Biosphere: Water cycle, Carbon cycle, Nitrogen cycle, Phosphorous					
	cycle. The role of cycles in maintaining a steady state					
	Evolution: Nature of stratigraphic records, Standard stratigraphic time					
	scale and introduction to the concept of time in geological studies.					
	Introduction to geochronological methods in their application in					
	geological studies. History of development in concepts of					
	uniformitarianism, catastrophism and neptunism. Law of superposition					
	and faunal succession. Introduction to the geology and geomorphology of					
	Indian subcontinent.					
	1. Time line of major geological and biological events.					
	2. Origin of life on Earth.					
4	3. Role of the biosphere in shaping the environment.	19				
	4. Future of evolution of the Earth and solar system: Death of the Earth.					
	Disturbing the Earth – Contemporary dilemmas					
	(a) Human population growth.					
	(b) Atmosphere: Green house gas emissions, climate change, air					
	pollution.					
	(c) Hydrosphere: Fresh water depletion.					
	(d) Geosphere: Chemical effluents, nuclear waste.					
	(e) Biosphere: Biodiversity loss. Deforestation. Robustness and fragility					
	of ecosystems.					
	TEXT BOOKS					
• P	lanetary Surface Processes, H. Jay Melosh, Cambridge University Press, 201	1.				
	onsider a Spherical Cow: A course in environmental problem solving, John H					
	niversity Science Books					
	olme's Principles of Physical Geology. 1992. Chapman & Hall.					
	miliani, C, 1992. Planet Earth, Cosmology, Geology and the Evolution of Lif	e and				
E	nvironment. Cambridge University Press.					

Nuclear and Particle Physics

Scheme Version:	Name of the subject: Nuclear and Particle	L	Т	Р	C	Semester: V	Contact Hours	
2023-28	Physics						per Week: 5+1	
		5	1	0	6		Total Hours: 60+15	
Subject Code:	Applicable to Program:	Evaluatio n	CIE	45 Marks		ination Dura		
SBS PHY 03 504 DS 5106	Integrated B.Sc. M.Sc. (Physics)	(Total Marks: 150)	TEE	105 Marks	Prere Eleme	quisite of Country of Moderr nts of Moderr uantum Mech	n Physics	
Course Descripti on	models, Radioactive de matter, Detectors for nu and their properties.	ecays, Nucle Iclear interac	ar reactition, Pa	ions, Inter rticle acce	ral properties of nuclei, Nuclear raction of nuclear radiation with elerators and Elementary particles			
Course Objectiv es	 Skills to describe and explain the properties of nuclei and derive them from various models of nuclear structure. To understand, explain and derive the various theoretical formulation of nuclear disintegration like α decay, β decay and decays. Develop basic understanding of nuclear reactions and decays with help of theoretical formulate and laboratory experiments. Skills to develop basic understanding of the interaction of various nuclear 							
Course Outcome s	 radiation with matter in low and high energy Learn the ground state properties of a nucleus – the constituents and their properties, mass number and atomic number, relation between the mass number and the radius and the mass number, average density, range of force, saturation property, stability curve, the concepts of packing fraction and binding energy, binding energy per nucleon vs. mass number graph, explanation of fusion and fission from the nature of the binding energy graph. Know about the nuclear models and their roles in explaining the ground state properties of the nucleus –(i) the liquid drop model, its justification so far as the nuclear properties are concerned, the semi-empirical mass formula, (ii) the shell model, evidence of shell structure, magic numbers, predictions of ground state spin and parity, theoretical deduction of the shell structure, consistency of the shell structure with the Pauli exclusion principles. Learn about the process of radioactivity, the radioactive decay law, the emission of alpha, beta and gamma rays, the properties of the constituents of these rays 							

COURSE SYLLABUS
 semiconductor detectors.
scintillation counter, the photo-multiplier tube, the solid state and
• Learn about the detectors of nuclear radiations- the Geiger-Mueller counter, the
production, energy loss due to ionization, Cerenkov radiation.
interaction of gamma ray by photoelectric effect, Compton scattering and pair
• Learn some basic aspects of interaction of nuclear radiation with matter-
by Coulomb potential.
nuclear reactions, direct and compound nuclear reactions, Rutherford scattering
derivation from conservation laws, The reaction cross-sections, the types of
• Learn the basic aspects of nuclear reactions, the Q-value of such reaction and its
Nuttall law, the radioactive series.
the electron capture, the fine structure of alpha particle spectrum, the Geiger-
of alpha decay and Pauli's theory of beta decay with the neutrino hypothesis,
and the mechanisms of the emissions of these rays, outlines of Gamow's theory

Unit No.	Content of Each Unit	Hours of
		Each Unit
1	General Properties of Nuclei: Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, angular momentum, parity, magnetic moments, electric moments, Nuclear Models: Liquid drop model approach, semi empirical mass formula and significance of its various terms, Fermi gas model (degenerate fermion gas, nuclear symmetry potential in Fermi gas), evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model, concept of nuclear force.	19
2	Radioactivity decay : (a) Alpha decay: basics of α -decay processes, theory of α -emission, Gamow factor, Geiger Nuttall law, (a) α -decay spectroscopy, (b) energy kinematics for beta-decay, positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays emission & kinematics, internal conversion. Nuclear Reactions : Types of Reactions, Conservation Laws, kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct Reaction, resonance reaction, Coulomb scattering (Rutherford scattering).	19
3	Interaction of Nuclear Radiation with matter: Energy loss due to ionization (Bethe-Block formula), energy loss of electrons, Cerenkov radiation. Gamma ray interaction through matter, photoelectric effect, Compton scattering, pair production, neutron interaction with matter. Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier	19

	photon detection (concept of charge carrier and mobility), neutron	
	detector.	
	Particle Accelerators: Accelerator facility available in India: Van-de	
	Graaff Generator (Tandem accelerator), Linear accelerator, Cyclotron,	
	Synchrotrons.	
4	Particle Physics: Particle interactions; basic features, types of particles	18
	and its families. Symmetries and Conservation Laws: energy and	
	momentum, angular momentum, parity, baryon number, Lepton number,	
	Isospin, Strangeness and charm	
	TEXT BOOKS	
	ntroductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008	3).
	Concepts of nuclear physics by Bernard L. Cohen. (Tata Mcgraw Hill, 1998).	
• Ii	ntroduction to the physics of nuclei & particles, R.A. Dunlap. (Thomson Asia	, 2004).
• I	ntroduction to High Energy Physics, D.H. Perkins, Cambridge Univ. Press	
• I	ntroduction to Elementary Particles, D. Griffith, John Wiley & Sons	
	Quarks and Leptons, F. Halzen and A.D. Martin, Wiley India, New Delhi	
	Basic ideas and concepts in Nuclear Physics - An Introductory Approach by K	Hevde
	IOP-Institute of Physics Publishing, 2004).	. 110 y ao
	Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).	· D
	Physics and Engineering of Radiation Detection, Syed Naeem Ahmed (Acader	nic Press
E	Elsevier, 2007).	
-	heoretical Nuclear Physics, J.M. Blatt & V.F.Weisskopf (Dover Pub.Inc., 199	21)

Atmospheric Physics

Scheme	Name of the subject:	L	Т	Р	C	Semester:	Contact	
Version:	Atmospheric Physics					V	Hours	
	1 2						per Week:	
							учеек: 5 + 1	
		5	1	0	6	-	Total	
2023-28		5	1	0	0		Hours:	
							60 + 15	
Subject	Applicable to	Evaluatio		45	Exam	ination Dura		
Code:	Program:	n	CIE	Marks		s (Theory)		
SBS	Integrated B.Sc.	(Total		105		quisite of Cou	irse:	
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	11010	quisite of cot		
505 DS	1.100 et (1 11 <u>9</u> 51 es)	150)		101umb				
5106		200)						
Course	This course aims at pr	oviding know	wledge o	of General	feature	es of Earth's a	atmosphere,	
Descripti	Atmospheric dynamics	-	-				_	
on	Atmospheric Aerosols.				Ĩ			
Course	• Develop skills						of various	
Objectiv	parameters to de	-	-		-			
es	• Learn skills to					*	U	
	atmospheric dy							
	laboratory the va	_				-	cillations of	
	various types an	-			• •			
	Good knowledg		_		-		-	
	Greenhouse effe	-	-		-	-		
	Local winds, clo		onsoon, o	cyclones, s	ea bree	ze and land br	eeze and	
Course	thunderstorms, e			_				
Outcome		-			orological observation,			
S	meteorological		•					
	• Understanding a	-	-					
	rotating coordin	-	-				-	
	various types of		atmosp	heric oscil	lations:	biannual, ann	ual and	
	semi-annual osc		~	C		.•		
	• Understanding a	1				,	·	
	buoyancy waves	s, atmospheri	c gravity	y waves (A	AGW) a	nd its propaga	ition in	

	 non-homogeneous medium, Lamb and Rossy waves and their propagation in 3- dimension. Wave absorption and non linear effects. Skills to use atmospheric Radar and Lidar to study atmospheric phenomenon, basic knowledge of Radars and Lidars including Radar equation and signal processing. Develop numerical skills to do data analysis from Radar and Lidar. Knowledge of the classification and properties of aerosols, their concentrations and size distribution. Production and removal of aerosols. Radiative and health effects and observation techniques for aerosols. Understanding the absorption and scattering of solar radiation, Rayleigh scattering and Mie scattering, Boyer-Lambert law, optical phenomenon in atmosphere. Basics of radiometry. 					
Unit No.	COURSE SYLLABUS Content of Each Unit	Hours of				
UIIIt No.	Content of Each Unit	Each Unit				
1	General features of Earth's atmosphere : Thermal structure of the Earth'sAtmosphere, Ionosphere, Composition of atmosphere, Hydrostatic equation, Potential temperature, Atmospheric Thermodynamics, Greenhouse effect and effective temperature of Earth, Local winds, monsoons, fogs, clouds, precipitation, Atmospheric boundary layer, Sea breeze and land breeze. Instruments for meteorological observations, including RS/RW, meteorological processes and different systems, fronts, Cyclones and anticyclones, thunderstorms	19				
2	Atmospheric Dynamics: Scale analysis, Fundamental forces, Basic conservationlaws, The Vectorial form of the momentum equation in rotating coordinate system, scale analysis of equation of motion, Applications of the basic equations, Circulations and vorticity, Atmospheric oscillations, Quasi biennial oscillation, annual and semi-annual oscillations, Mesoscale circulations, The general circulations, Tropical dynamics.	19				
	Atmospheric Waves: Surface water waves, wave dispersion, acoustic waves, buoyancy waves, propagation of atmospheric gravity waves (AGWs) in a nonhomogeneous medium, Lamb wave, Rossby waves and					

	its propagation in three dimensions and in sheared flow, wave absorption, non-linear consideration	
3	Atmospheric Radar and Lidar: Radar equation and return signal, Signal processing and detection, Various type of atmospheric radars, Application of radars to study atmospheric phenomena, Lidar and its applications, Application of Lidar to study atmospheric phenomenon. Data analysis tools and techniques.	18
4	Atmospheric Aerosols: Spectral distribution of the solar radiation, Classification and properties of aerosols, Production and removal mechanisms, Concentrations and size distribution, Radiative and health effects, Observational techniques for aerosols, Absorption and scattering of solarradiation, Rayleigh scattering and Mie scattering, Bouguert-Lambert law, Principles of radiometry, Optical phenomena in atmosphere, Aerosol studies using Lidars.	19
	TEXT BOOKS	
 Th 20 An Ra 	undamental of Atmospheric Physics – Murry L Salby; Academic Press, Vol 6 ne Physics of Atmosphere – John T. Houghton; Cambridge University press; 202. In Introduction to dynamic meteorology – James R Holton; Academic Press, 2 adar for meteorological and atmospheric observations – S Fukao and KHama pan, 2014	3 rd edn. 2004

I

Physics of Devices and Instrumentation

Scheme Version:	Name of the subject:	L	Т	Р	C	Semester: V	Contact Hours						
	Physics of Devices and Instrumentation						per						
	and mistrumentation						Week:						
				-			5 + 1						
2023-28		5	1	0	6		Total U						
							Hours: 60 + 15						
Subject	Applicable to	Evaluatio		45	Fyom	ination Durat							
Code:	Program:	n	CIE	Marks		s (Theory)							
SBS	Integrated B.Sc.	(Total	CIL	105		quisite of Cor	urse: None						
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	11010	quisite of Cot							
506 DS	(1 Hystes)	150)		1. Turns									
5106		,											
Course	This course aims at pro	oviding know	vledge o	f Metal ox	kide sen	niconductors,	UJT, JFET,						
Descripti	MOSFET, Charge coup	pled Devices	and Tu	nnel Diod	e, Powe	er Supply and	the role of						
on	Capacitance and Inducta	ance filters, A	Active ar	nd passive	filters a	nd various typ	es of filters,						
	Multivibrators using transistors, Phase locked loops, voltage controlled oscillator,												
	Photolithography for I	C fabricatio	on, abou	t masks a	and etc	hing, Parallel	and serial						
	communications and US	SB standards	and GP	IB, Differe	ent mod	ulation techni	ques.						
Course	Acquire knowle	dge and skill	s to unde	erstand the	workin	g of the follow	ving devices						
Objectiv	and instruments	and practical	l knowle	dge to use	them by	doing experi	ments in the						
es	laboratory.	-		-	-								
	After completion of this	a a a truc	lanta wa	uld ha ahl	a to Ma	ton the follow	ingu						
	After completion of this	s course, stuc	ients wo	uid de adie		ster the follow	ing:						
	• Metal oxide sem	niconductors,	UJT, JF	ET, MOS	FET, Cl	narge coupled	Devices						
C	and Tunnel Diod	de.											
Course	• Power Supply an	nd the role of	f Capacit	tance and I	Inductar	nce filters.							
Outcome	 Active and passi 	ive filters and	d various	s types of t	filters.								
S	• Multivibrators u	sing transisto	ors, Phas	e locked lo	oops, vo	ltage controll	ed						
	oscillators												
	Basics of photol	• • •					-						
	• Concepts of para		al comm	unication	and kno	wledge of US	В						
	standards and G												
	Basic idea of con	mmunicatior	n includi	ng differer	nt modu	lation technique	 Basic idea of communication including different modulation techniques. 						

	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1	Devices : Characteristic and small signal equivalent circuits of UJT and JFET. Metal- semiconductor Junction. Metal oxide semiconductor (MOS) device. Ideal MOS and Flat Band voltage. SiO2-Si based MOS. MOSFET– their frequency limits. Enhancement and Depletion Mode MOSFETS, CMOS. Charge coupled devices. Tunnel diode.	18
	 Power supply and Filters: Block Diagram of a Power Supply, Qualitative idea of C and L Filters. IC Regulators, Line and load regulation, Short circuit protection Active and Passive Filters, Low Pass, High Pass, Band Pass and band Reject Filters. Multivibrators: Astable and Monostable Multivibrators using 	
2	transistors. Phase Locked Loop(PLL): Basic Principles, Phase detector(XOR & edge triggered), Voltage Controlled Oscillator (Basics, varactor). Loop Filter– Function, Loop Filter Circuits, transient response, lock and capture. Basic idea of PLL IC (565 or 4046)	19
3	Processing of Devices: Basic process flow for IC fabrication, Electronic grade silicon.Crystal plane and orientation. Defects in the lattice. Oxide layer. Oxidation Technique for Si. Metallization technique. Positive and Negative Masks. Optical lithography. Electron lithography. Feature size control and wet anisotropic etching. Lift off Technique. Diffusion and implantation	19
4	Digital Data Communication Standards : Serial Communications: RS232, Handshaking, Implementation of RS232 on PC. Universal Serial Bus (USB): USB standards, Types and elements of USB transfers. Devices (Basic idea of UART). Parallel Communications: General Purpose Interface Bus (GPIB), GPIB signals and lines, Handshaking and interface management, Implementation of a GPIB on a PC. Basic idea of sending data through a COM port.	19
	Introduction to communication systems : Block diagram of electronic communication system, Need for modulation. Amplitude modulation. Modulation Index. Analysis of Amplitude Modulated wave. Sideband frequencies in AM wave. CE Amplitude Modulator. Demodulation of	

AM wave using Diode Detector. basic idea of Frequency, Phase, Pulse	
and Digital Modulation including ASK, PSK, FSK	

TEXT BOOKS

- Physics of Semiconductor Devices, S.M. Sze & K.K. Ng, 3 rd Ed.2008, John Wiley & Sons
- Electronic devices and integrated circuits, A.K. Singh, 2011, PHI Learning Pvt. Ltd.
- Op-Amps & Linear Integrated Circuits, R.A.Gayakwad, 4 Ed. 2000, PHI Learning Pvt. Ltd
- Electronic Devices and Circuits, A. Mottershead, 1998, PHI Learning Pvt. Ltd.
- Electronic Communication systems, G. Kennedy, 1999, Tata McGraw Hill.
- Introduction to Measurements & Instrumentation, A.K. Ghosh, 3 rd Ed., 2009, PHI Learning Pvt. Ltd.
- Semiconductor Physics and Devices, D.A. Neamen, 2011, 4 th Edition, McGraw Hill
- PC based instrumentation; Concepts & Practice, N.Mathivanan, 2007, Prentice-Hall of India

Nano Materials and Applications

Scheme	Name of the subject:	L	Т	Р	С	Semester:	Contact	
Version:						VI	Hours	
	Nano Materials and						per	
	Applications						Week:	
							5 + 1	
2023-28		5	1	0	6		Total	
							Hours:	
							60 + 15	
Subject	Applicable to	Evaluatio		45	Exam	ination Dura	tion:	
Code:	Program:	n	CIE	Marks	3 hour	rs (Theory)		
SBS	Integrated B.Sc.	(Total		105	Prere	Prerequisite of Course:		
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks				
601 DS		150)						
5106								
Course	This course will famili	arize the stu	dents to	the scien	ce relate	ed to various	phenomena	
Descripti	observed at the nanosca	le. Starting fi	rom an ir	ntroduction	n to the l	basic ideas of	nanoscience	
on	and nanotechnology, va	arious examp	les will	be discuss	ed whic	ch highlight th	ne impact of	
	nanoscale on various p	roperties of	technolo	ogical inte	rest. Te	chnologies bu	ilt on these	
	phenomena will be disc	ussed.						
	• Duradida e es				:	·		
Course						e promising a		
Objectiv	for the field.		male me		liang of	f the nature ar	la prospects	
es			ut vomiou	a armthaai	a and al	anatonization	tachnicusa	
05	• Provide mild of nano mate		ut variou	is synthesi	s and ci	naracterization	rtechniques	
			ronic tro	nenort pro	nortion	of nono motor	alc	
		lications of n				of nano materi elde	iais.	
	• Discuss app. This course will enable				u ious II	cius.		
Course	CO102C.1. Gather suff		adaa aha	ut the foce	inatina	habaviour of		
Outcome	nanomaterials and tunir		-		-			
S	CO102C.2. Obtain info		-				9 17 7	
	theoretical background,		-		-		-	
	nanoscience and techno	-	Je useru	r tor pursu	ing turu	ier study off th		
		iogy.						
		COURSE	SYLLA	BUS				

Unit No.	Content of Each Unit	Hours of Each Unit
1	Nanoscale Systems: Length scales in physics, Nanostructures: 1D, 2D and 3D nanostructures (nanodots, thin films, nanowires, nanorods), Band structure and density of states of materials at nanoscale, Size Effects in nano systems, Quantum confinement: Applications of Schrodinger equation- Infinite potential well, potential step, potential box, quantum confinement of carriers in 3D, 2D, 1D nanostructures and its consequences.	19
	Synthesis of Nanostructure Materials: Top down and Bottom up approach, Photolithography. Ball milling. Physical vapor deposition (PVD): Thermal evaporation, E-beam evaporation, Pulsed Laser deposition. Chemical vapor deposition (CVD). Sol-Gel. Electrodeposition. Spray pyrolysis. Hydrothermal synthesis. Preparation through colloidal methods. MBE	
2	 Characterization: X-Ray Diffraction. Optical Microscopy. Scanning Electron Microscopy. Transmission Electron Microscopy. Atomic Force Microscopy. Scanning Tunneling Microscopy. Electron Transport: Carrier transport in nanostrcutures. Coulomb blockade effect, thermionic emission, tunneling and hoping conductivity. Defects and impurities: Deep level and surface defects 	19
3	Optical Properties: Coulomb interaction in nanostructures. Concept of dielectric constant for nanostructures and charging of nanostructure. Quasi-particles and excitons. Excitons in direct and indirect band gap semiconductor nanocrystals. Quantitative treatment of quasi-particles and excitons, charging effects. Radiative processes: General formalization-absorption, emission and luminescence. Optical properties of heterostructures and nanostructures.	19
4	Applications: Applications of nanoparticles, quantum dots, nanowires and thin films for photonic devices (LED, solar cells). Single electron devices (no derivation). CNT based transistors. Nanomaterial Devices: Quantum dots heterostructure lasers, optical switching and optical data storage. Magnetic quantum well; magnetic dots - magnetic data storage. Micro Electromechanical Systems (MEMS), Nano Electromechanical Systems (NEMS).	18

TEXT BOOKS

- C.P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley India Pvt. Ltd.).
- S.K. Kulkarni, Nanotechnology: Principles & Practices (Capital Publishing Company)
- K.K. Chattopadhyay and A. N. Banerjee, Introduction to Nanoscience and Technology (PHI Learning Private Limited).
- Richard Booker, Earl Boysen, Nanotechnology (John Wiley and Sons).
- M. Hosokawa, K. Nogi, M. Naita, T. Yokoyama, Nanoparticle Technology Handbook (Elsevier, 2007).
- Introduction to Nanoelectronics, V.V. Mitin, V.A. Kochelap and M.A. Stroscio, 2011, Cambridge University Press.
- Bharat Bhushan, Springer Handbook of Nanotechnology (Springer-Verlag, Berlin, 2004).

Medical Physics

Scheme	Name of the subject:	L	Т	Р	С	Semester:	Contact	
Version:	Madiaal					VI	Hours	
2023-28	Medical						per	
2025-28	Physics						Week:	
							5 + 1	
		5	1	0	6		Total	
							Hours:	
							60 + 15	
Subject	Applicable to	Evaluatio		45		ination Dura	tion:	
Code:	Program:	n	CIE	Marks		rs (Theory)		
SBS	Integrated B.Sc.	(Total		105	Prere	quisite of Cou	irse: None	
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks				
602 DS		150)						
5106								
Course	This course aims at pro	U	U	•			e	
Descripti	and Therapeutic Syste		-					
on	Oncology Physics, Rad	liation and R	adiation	Protection	n, and F	Physics of Dia	gnostic and	
	Therapeutic Systems							
Course	• Essential ph	ysics of Me	edical In	naging, Ra	diologi	cal Physics, 7	Therapeutic	
Objectiv	Systems and	Radiation T	herapy i	s acquired	•			
es								
	This course will enable the student to:							
	 Focus on the approximation 			o clinical i	nedicin	-		
	 Gain a broad and 		•				ning	
	particular experi			-	I Hysic	s while develo	ping	
	 Learn about the 					and hip Dhysic	0	
Course	exploring its per	-		• • •		-		
Outcome	Physics of the se		a physic		e. Other	topics include	ettie	
S	 He / She will stu 		ic and th	aranautic	annlicat	ione like the F	CC	
		• •						
	radiation Physic	s, A-lay lect	morogy,	unuasoun	u anu m	lagheuc resoll	ance	
	imaging.	with referen	nan ta mi	orlying of -	ionicusa	diagnostic to si	la madical	
	Gain knowledge			0		0		
	imaging techniq		-					
	living organisms and how it is used as a therapeutic technique and radiation							
	safety practices							

U nit No.	COURSE SYLLABUS Content of Each Unit	Hours of Each Uni
1	 Physics of Body-I: Basic Anatomical Terminology: Standard Anatomical Position, Planes. Familiarity with terms like- Superior, Inferior, Anterior, Posterior, Medial, Lateral, Proximal and Distal. Mechanics of the body: Skeleton, forces, and body stability. Muscles and dynamics ofbody movement. Physics of Locomotors Systems: joints and movements, Stability and Equilibrium. Energy household of the body: Energy balance in the body, Energy consumption of the body. Heat losses of the body, Thermal Regulation. Pressure system of body: Physics of breathing, Physics of cardiovascular system. Physics of Body-II: Acoustics of the body: Nature and characteristics of sound, Production of speech, Physics of the ear, Diagnostics with sound and ultrasound. Optical system of the body: Physics of the eye. Electrical system of the body: Physics of the nervous system, Electrical signals and information transfer. 	19
2	 Physics of Diagnostic and Therapeutic Systems-I: X-Rays: Electromagnetic spectrum, production of x-rays, x-ray spectra, Brehmsstrahlung, Characteristic x-ray. X-ray tubes & types: Coolidge tube, x-ray tube design, tube cooling stationary mode, Rotating anode x- ray tube, Tube rating, quality and intensity of x-ray. X-ray generator circuits, half wave and full wave rectification, filament circuit, kilo voltage circuit. Single and three phase electric supply. Power ratings. Types of X-Ray Generator, high frequency generator, exposure timers and switches, HT cables. Radiation Physics: Radiation units exposure, absorbed dose, units: rad, gray,relative biological effectiveness, effective dose- Rem & Sievert, inverse square law. Interaction of radiation with matter Compton & photoelectric effect, linear attenuation coefficient. Radiation 	19

	TFT.	
	Medical Imaging Physics : Evolution of Medical Imaging, X-ray diagnosticsand imaging, Physics of nuclear magnetic resonance (NMR), NMR imaging, MRI Radiological imaging, Ultrasound imaging, Physics of Doppler with applications and modes, Vascular Doppler. Radiography: Filters, grids, cassette, X-ray film, film processing, fluoroscopy. Computed tomography scanner- principle and function, display, generations, mammography. Thyroid uptake system and Gamma camera (Only Principle, function and display). (9 Lectures)	
3	Radiation Oncology Physics : External Beam Therapy (Basic Idea):Telecobalt, Conformal Radiation Therapy (CRT), 3DCRT, IMRT, Image Guided Radiotherapy, EPID, Rapid Arc, Proton Therapy, Gamma Knife, Cyber Knife. Contact Beam Therapy (Basic Idea): Brachytherapy-LDR and HDR, Intra Operative Brachytherapy. Radiotherapy, kilo voltage machines, deep therapy machines, Telecobalt machines, Medical linear accelerator. Basics of Teletherapy units, deep X-ray, Telecobalt units, Radiation protection, external beam characteristics, dose maximum and build up – bolus, percentage depth dose, tissue maximum ratio and tissue phantom ratio, Planned target Volume and Gross Tumour Volume.	20
4	 Radiation and Radiation Protection: Principles of radiation protection, protective materials-radiation effects, somatic, genetic stochastic and deterministic effect. Personal monitoring devices: TLD film badge, pocket dosimeter, OSL dosimeter. Radiation dosimeter. Natural radioactivity, Biological effects of radiation, Radiation monitors. Steps to reduce radiation to Patient, Staff and Public. Dose Limits for Occupational workers and Public. AERB: Existence and Purpose. Physics of Diagnostic and Therapeutic Systems-II: Diagnostic nuclear medicine: Radiopharmaceuticals for radioisotope imaging, Radioisotope imaging equipment, Single photon and positron emission tomography. Therapeutic nuclear medicine: Interaction between radiation and matter Dose and isodose in radiation treatment. Medical Instrumentation: Basic Ideas of Endoscope and Cautery, Sleep Apnea and Cpap Machines, Ventilator and its modes. 	15

TEXT BOOKS

- Medical Physics, J.R. Cameron and J.G.Skofronick, Wiley (1978)
- Basic Radiological Physics Dr. K. Thayalan Jayapee Brothers Medical Publishing Pvt. Ltd. New Delhi (2003)
- Christensen's Physics of Diagnostic Radiology: Curry, Dowdey and Murry Lippincot Williams and Wilkins (1990)
- Physics of the human body, Irving P. Herman, Springer (2007).
- Physics of Radiation Therapy : F M Khan Williams and Wilkins, 3 rd edition (2003)
- The essential physics of Medical Imaging: Bushberg, Seibert, Leidholdt and Boone Lippincot Williams and Wilkins, Second Edition (2002)
- Handbook of Physics in Diagnostic Imaging: R.S.Livingstone: B.I. Publication Pvt Ltd.
- The Physics of Radiology-H E Johns and Cunningham.

Computational Methods in Physics

Scheme Version: 2023-28	Name of the subject: Computational Methods in Physics	L 3	T 1	P 0	C 4	Semester: VI	Contact Hours per Week: 3+1 Total Hours: 45 + 15
Subject Code: SBS PHY 03	Applicable to Program: Integrated BSc-MSc Physics	Evaluation (Total Marks: 100)	CIE	30 Marks 70	3 hour	ination Dur rs (Theory) quisite of Co	
603 DS 3104	Flysics	100)	TEE	Marks	None	quisite of C	ourse:
#		Conte	ents				Hours
1	Numerical Computing computing, process a Evolution of numerical algorithms, Flowcharts, Approximations and H errors, Numerical error Relative errors, Error Convergence of Iterati total error.	s, Inherent solute and Stability,	15				
2	Roots of Non-linear Iterative methods, Bise Raphson method, Secar Gauss's elimination factorization method, m Gauss-Seidel method. Numerical Solution o Second Order): Tay simultaneous first/secon successive approximati Runge-Kutta methods:	 Newton- equations: triangular n method, (First and nethod for method of 's method. 	15				
3	Methods, Runge-Kutta equations, Runge-Kutta Interpolation: Introduc backward difference	methods for s methods for s	imultan econd o differen	eous first order diffe	order order of the second s	differential equations.	15

	interpolation formulae: Gauss's formula, Stirling's formula. Interpolation with unevenly spaced points: Lagrange's formula, Cubic Spline Interpolation.	
	Numerical Differentiation and Integration: Numerical differentiation using Newton's forward and backward difference formula, Newton-Cotes quadrature formula of Numerical Integration, Trapezoidal rule, Simpson's one-third rule, Simpson's three-eight rule, Higher order rules.	
	Eigenvectors and eigenvalues: homogeneous equations, characteristic equation. Method and secant method. Order of convergence in different Power method, Jacobi, Given's and Householder's methods	
4	Random Number generators: True random numbers and pseudo- random numbers, mid-square method, multiplicative congruential generator, tests for randomness; Applications: nuclear radioactivity, brownian motion.	15
	TEXT BOOKS	
• In	troduction to Numerical Analysis, S.S. Sastry, Ed. V., 2012, PHI Learning	
	omputational Physics: An Introduction, R. C. Verma, et al. New Age ublishers, New Delhi(1999)	Internation
• ^	first course in Numerical Methods IIM Ascher and C Graif 2012 I	

- A first course in Numerical Methods, U.M. Ascher and C. Greif, 2012, PHI Learning Elementary Numerical Analysis, K.E. Atkinson, Ed. III, 2007, Wiley India Edition.
- Numerical methods, E. Balagurusamy, 2016, Tata McGraw Hill.
- Object Oriented programming with C++, E. Balagurusamy, 2016, Tata McGraw Hill.

Computational Methods in Physics (Laboratory)

Scheme Version:	Name of the subject: Computational Methods in Physics	L	Т	Р	C	Semester: VI	Contact Hours per Week: 4
2023-28	(Laboratory)	0	0	4	2		Total Hours: 60
Subject Code:	Applicable to Program:	Evaluatio n	CIE	15 Marks	Examination Duration: 3 hours (Theory)		

SBS	Integrated BSc-MSc	(Total						
PHY 03	Physics	Marks:						
604 DS		50)		35	Prerequisite of Course:			
0042			TEE	Marks	None	Hours		
#	Contents							
1	Programming exercises (and corresponding physics applications) using different methods: 1 1. To find roots of linear and non-linear equations 2. To find numerical solutions of ordinary differential equations (First and Second Order) 3. For Interpolation							
2	 Programming exercises (and corresponding physics applications) using different methods: 1. For numerical integration and differentiation 2. To find eigenvalues and eigenvectors 3. To generate pseudo-random numbers 							
		TEXT	BOOK	S				
 TEXT BOOKS Introduction to Numerical Analysis, S.S. Sastry, 5th Edn., 2012, PHI Learning Pvt. Ltd. Computer Programming in Fortran 77". V. Rajaraman (Publisher: PHI). LaTeX-A Document Preparation System", Leslie Lamport (Second Edition, AddisonWesley, 1994). Gnuplot in action: understanding data with graphs, Philip K Janert, (Manning 2010) Schaum's Outline of Theory and Problems of Programming with Fortran, S Lipsdutz and A Poe, 1986Mc-Graw Hill Book Co. Computational Physics: An Introduction, R. C. Verma, et al. New Age International Publishers, New Delhi(1999) A first course in Numerical Methods, U.M. Ascher and C. Greif, 2012, PHI Learning Elementary Numerical Analysis, K.E. Atkinson, 3rd Ed., 2007, Wiley India Edition. Numerical methods, E. Balagurusamy, 2016, Tata McGraw Hill. Object Oriented programming with C++, E. Balagurusamy, 2016, Tata McGraw Hill. 								

Astronomy and Astrophysics

Scheme	Name of the subject:	L	Т	Р	C	Semester:	Contact
Version:						VI	Hours
	Astronomy and						per
	Astrophysics						Week:
2023-28							5 + 1
		5	1	0	6		Total
							Hours:
							60 + 15
Subject	Applicable to	Evaluatio		45	Exam	ination Dura	tion:
Code:	Program:	n	CIE	Marks	3 hour	rs (Theory)	
SBS	Integrated B.Sc.	(Total		105	Prere	quisite of Cou	irse:
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks			
605 DS		150)					
5106							
Course	This course aims at p	-	_				-
Descripti	positional astronomy,			-	-		
on	solar and stellar physics	s, Milky Way	y and Ga	laxies – ir	ntroduct	ory knowledg	e and Large
	scale structures and exp	ending unive	erse.				
	Skills to lear	rn and operat	e astron	omical ins	trument	s to perform o	observations
	related to the	e positional a	stronom	y measure	ement.		
	 Conceptuali 	ze skills to	underst	and basic	param	eters for des	cribing the
Course	properties	of stars a	nd mal	king exp	eriment	al measurem	ents, their
Objectiv	interpretatio	n and role in	understa	anding of a	astrophy	sical phenom	enon. Study
es	of solar and	stellar spectr	a.				
6	• Learn to des	cribe solar p	arameter	rs, solar at	mosphe	re, origin of so	olar system,
	solar and ex	tra-solar plar	nets, plar	netary ring	s.		
	 Acquire bas 	ic knowledg	e of Mil	ky Way a	nd Gala	xies, their pro	operties and
	structure.						
	• Skills for u	nderstanding	g basics	of large	scale s	tructures and	expending
	universe.	_					
Course	Ability to comp	rehend astroi	nomical	scales and	underst	and basic con	cepts of
Outcome	positional astror	nomy like ast	ronomic	al coordin	ate syste	em and measu	rement of
S	distances, time a	and temperat	ure and i	radius of s	tar.		
	 Understand basi 	c parameters	of stars	like brigh	tness, ra	diant flux, lun	ninosity,
	magnitude, orbi	ts, spectral cl	lassificat	tion. H-R o	diagram		
	<u> </u>						

	 Understand astronomical techniques, various types of optical telescepe mountings. Various types of detectors and their use with Understanding Physics of sun and solar system: photosphere, chro corona, solar activity. Solar MHD, helioseismology, solar system a Nebular model. Tidal forces and planetary rings. Understanding Physics of stars and sun. Role of gravitation in astr Newton vs Einstein, viral theorem and thermodynamic equilibrium spectra, stellar spectra. Spectral classification, luminosity classification, temperature dependence of galaxies and Milky Way. Morphology classification of galaxies, intrinsic stages of galaxies, galactic halo, gas and dust in galaxy, spiral arm, rotation of galaxy and dark maticlusters in Milky Way, galactic nucleus and its properties. 	telescopes. mosphere, and its origin. oPhysics, n. Atomic ndence. v and milky way,
	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1	Astronomical Scales: Astronomical Distance, Mass and Time, Scales, Brightness,Radiant Flux and Luminosity, Measurement of Astronomical Quantities Astronomical Distances, Stellar Radii, Masses of Stars, Stellar Temperature. Basic concepts of positional astronomy: Celestial Sphere, Geometry of a Sphere, Spherical Triangle, Astronomical Coordinate Systems, Geographical Coordinate Systems, Horizon System, Equatorial System, Diurnal Motion of the Stars, Conversion of Coordinates. Measurement of Time, Sidereal Time, Apparent Solar Time, Mean Solar Time, Equation of Time, Calendar. Basic Parameters of Stars: Determination of Distance by Parallax Method; Brightness, Radiant Flux and Luminosity, Apparent and Absolute magnitude scale, Distance Modulus; Determination of Temperature and Radius of a star; Determination of Masses from Binary orbits; Stellar Spectral Classification, Hertzsprung-Russell Diagram.	19
2	Astronomical techniques: Basic Optical Definitions for Astronomy (MagnificationLight Gathering Power, Resolving Power and Diffraction Limit, Atmospheric Windows), Optical Telescopes (Types of Reflecting Telescopes, Telescope Mountings, Space Telescopes, Detectors and Their Use with Telescopes (Types of Detectors, detection Limits with Telescopes).	19

	Physical principles: Gravitation in Astrophysics (Virial Theorem,				
	Newton versus Einstein), Systems in Thermodynamic Equilibrium.				
	The sun (Solar Parameters, Solar Photosphere, Solar Atmosphere,				
	Chromosphere.Corona, Solar Activity, Basics of Solar Magneto-				
	hydrodynamics. Helioseismology). The solar family (Solar				
	System: Facts and Figures, Origin of the Solar System: TheNebular				
	Model, Tidal Forces and Planetary Rings, Extra-Solar Planets.				
	Stellar spectra and classification Structure (Atomic Spectra Revisited,				
	Stellar Spectra, Spectral Types and Their Temperature Dependence,				
	Black Body Approximation, H R Diagram, Luminosity Classification)				
	The milky way : Basic Structure and Properties of the Milky Way, Nature				
	of Rotation of the Milky Way (Differential Rotation of the Galaxy and				
3	Oort Constant, Rotation Curve of the Galaxy and the Dark Matter, Nature	18			
	of the Spiral Arms), Stars and Star Clusters of the Milky Way,				
	Properties of and around the Galactic Nucleus.				
	Galaxies: Galaxy Morphology, Hubble's Classification of Galaxies,				
	Elliptical Galaxies (The Intrinsic Shapes of Elliptical, de Vaucouleurs				
	Law, Stars and Gas). Spiral and Lenticular Galaxies (Bulges, Disks,				
	Galactic Halo) The Milky Way Galaxy, Gas and Dust in the Galaxy,				
4	Spiral Arms.				
	Large scale structure & expanding universe: Cosmic Distance Ladder				
	(An Example from Terrestrial Physics, Distance Measurement using				
	Cepheid Variables), Hubble's Law (Distance- Velocity Relation),				
	Clusters of Galaxies (Virial theorem and Dark Matter).				
	TEXT BOOKS				
• M	odern Astrophysics, B.W. Carroll & D.A. Ostlie, Addison-Wesley Publishin	g Co.			
• In	troductory Astronomy and Astrophysics, M. Zeilik and S.A. Gregory, 4 th Ec	lition,			
	aunders College Publishing.				
• T1	ne physical universe: An introduction to astronomy, F.Shu, Mill Valley: Univ	resity			
	cience Books.	-			
• Fu	Indamental of Astronomy (Fourth Edition), H. Karttunen et al. Springer				
	.S. Krishnasamy, 'Astro Physics a modern perspective,' Reprint, New Age In	ternational			
) Ltd, New Delhi,2002.				
-	aidyanath Basu, 'An introduction to Astro physics', Second printing, Prentice	-Hall of			
	dia Private limited, New Delhi,2001.				
		hatia Nor			
• Te	extbook of Astronomy and Astrophysics with elements of cosmology, V.B. B	natia, marc			

Embedded systems- Introduction to Microcontroller

Scheme	Name of the subject:	L	Т	Р	С	Semester:	Contact	
Version:						VI	Hours	
	Embedded systems-						per	
	Introduction to						Week:	
2023-28	Microcontroller						5 + 1	
		5	1	0	6		Total	
							Hours:	
							60 + 15	
Subject	Applicable to	Evaluatio		45	Exam	ination Dura	tion:	
Code:	Program:	n	CIE	Marks	3 hour	rs (Theory)		
SBS	Integrated B.Sc.	(Total		105	Prere	quisite of Co	urse: Basic	
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	Electr	onics		
606 DS		150)						
5106								
Course	This course aims at pro-	oviding know	vledge c	of Embedd	led Syst	ems Intel mic	croprocessor	
Descripti	8085, Intel 8051 micr	ocontroller,	architect	ture, instru	uction s	set, programn	ning and its	
on	memory organization,	timing diagr	am, Inp	ut/output	operatio	ons and mani	pulation for	
	arithmetic and logical	operations,	Program	nming wit	th and	without inter	rupt service	
	request, Interfacing par	allel and seri	al ADC	and DAC	, Embe	dded system d	levelopment	
	and product developme	nt						
	• Learn the	architactura	of emb	addad sys	tome t	hair classific	eation and	
Course	application.Learn about the microprocessors and the organization of microprocessor							
Objectiv	based system	-	10005501	s and the	organiz		roprocessor	
es			microc	ontrollers	and t	heir role in	1/0 port	
	-	g and their in				nen fole m	i/o poir	
	Learn about	0				convertors		
	Learn basics			-	-			
	At the successful comp			<u> </u>		ted to master	the	
	following:		course u		-s enpor			
Course	 Embedded system 	ems including	g its gene	eric archite	ecture.	lesign and cla	ssifications.	
Outcome	 Embedded system Embedded proc 	-	-			und old		
S	 Organization of 				architec	ture, pin diagr	am, timing	
	diagram, instruc	-						
	 Organization of 			-	•		on set.	
	programming a						,	
	Programming u		, 8uiii		and	0		

	• Input/output operations and manipulation for arithmetic and logica	l operations.				
COURSE SYLLABUS						
Unit No.	Content of Each Unit	Hours of Each Unit				
1	Embedded system introduction : Introduction to embedded systems and generalpurpose computer systems, architecture of embedded system, classifications, applications and purpose of embedded systems, challenges & design issues in embedded systems, operational and non-operational quality attributes of embedded systems, elemental description of embedded processors and microcontrollers.					
	Review of microprocessors: Organization of Microprocessor based system, 8085µp pindiagram and architecture, concept of data bus and address bus, 8085 programming model, instruction classification, subroutines, stacks and its implementation, delay subroutines, hardware and software interrupts.					
	8051 microcontroller : Introduction and block diagram of 8051 microcontroller, architecture of 8051, overview of 8051 family, 8051 assembly language programming, Program Counter and ROM memory map, Data types and directives, Flag bits and Program Status Word (PSW) registr, Jump, loop and call instructions.					
2	8051 I/O port programming : Introduction of I/O port programming, pin out diagram of 8051 microcontroller, I/O port pins description & their functions, I/O port programming in 8051 (using assembly language), I/O programming: Bit manipulation.					
	Programming : 8051 addressing modes and accessing memory using various addressing modes, assembly language instructions using each addressing mode, arithmetic and logic instructions, 8051 programming in C: for time delay & I/O operations and manipulation, for arithmetic and logic operations, for ASCII and BCD conversions.					
3	Timer and counter programming : Programming 8051 timers, counter programming.	18				
	Serial port programming with and without interrupt: Introduction to 8051 interrupts, programming timer interrupts, programming external					

	hardware interrupts and serial communication interrupt, interrupt priority in the 8051.	
	Interfacing 8051 microcontroller to peripherals : Parallel and serial ADC, DAC interfacing, LCD interfacing.	
	Programming Embedded Systems : Structure of embedded program, infinite loop, compiling, linking and locating, downloading and debugging.	
4	Embedded system design and development: Embedded system development environment, file types generated after cross compilation, disassembler/ decompiler, simulator, emulator and debugging, embedded product development life-cycle, trends in embedded industry.	19
	Introduction to Arduino: Pin diagram and description of Arduino UNO. Basic programming	
	TEXT BOOKS	
Hi	e 8051 Microcontroller and Embedded Systems Using Assembly and C, M.A	
EnMi	azidi, and R.D. McKinlay, 2 nd Ed., 2007, Pearson Education India. nbedded microcomputer system: Real time interfacing, J.W.Valvano, 2000, I icrocontrollers in practice, I. Susnea and M. Mitescu, 2005, Springer.	
	nbedded Systems: Design & applications, S.F. Barrett, 2008, Pearson Educat nbedded Microcomputer systems: Real time interfacing, J.W. Valvano 2011,	

SEC PAPERS

Physics Workshop Skills

Version: SkillsPhysics Workshop SkillsI2023-28SkillsII21242124Subject Code: SBSApplicable to Program: Integrated B.Sc.Evaluatio n (Total30Examination Dura 3 hours (Practical of Total	only)					
2023-282023-28212421242124Subject Code: SBSApplicable to Program: Integrated B.Sc.Evaluatio n (Total30Examination Duration 3 hours (Practical of 70	Week: 2+1+2 Total Hours: 30+15+30 ation: only)					
Subject Code: SBSApplicable to Program: Integrated B.Sc.Evaluatio n (Total30 CIEExamination Dura 3 hours (Practical of Program: 70	2+1+2 Total Hours: 30+15+30 ation: only)					
SubjectApplicable toEvaluatio30Examination DurationCode:Program:nCIEMarks3 hours (Practical of Control of	Total Hours: 30+15+30 ation: only)					
SubjectApplicable toEvaluatio30Examination DurationCode:Program:nCIEMarks3 hours (Practical of Control of	Hours: 30+15+30 ation: only)					
Code: SBSProgram: Integrated B.Sc.nCIEMarks3 hours (Practical of Or Prerequisite of Control	30+15+30 ation: only)					
Code: SBSProgram: Integrated B.Sc.nCIEMarks3 hours (Practical of Or Prerequisite of Control	ation: only)					
Code: SBSProgram: Integrated B.Sc.nCIEMarks3 hours (Practical of Or Prerequisite of Control	only)					
SBSIntegrated B.Sc.(Total70Prerequisite of Co						
	urse None					
	ULSC. INUNC					
PHY 03 M.Sc. (Physics) Marks: TEE Marks						
101 SE 100)						
2124						
Course This course aims at introducing to make simple length, height, time, a	area, volume					
Descripti measurements, mechanical skills needed to the workshop practice, E	lectrical and					
on electronics skills related to the measurement of various electrical and	electronics skills related to the measurement of various electrical and electronics					
quantities.						
	.1 1 . 1 .					
• Learn to use mechanical tools to make simple measurement of le	ngth, height,					
time, area and volume.	6 1					
• Obtain hand on experience of workshop practice by doing cast						
Objective inactining, welding and learn to use various machine tool like	_					
infining and drining machines etc. and working with woode	n and metal					
DIOCKS.						
• Learn to use various instruments for making electrical and						
measurements using multimeter, oscilloscopes, power suppl	y, electronic					
switches and relays.						
Course After the successful completion of the course the student is expected to acq						
Outcome hands on experience / working knowledge on various machine tools, lathes	_					
s drilling machines, cutting tools, welding sets and also in different gear syst						
etc. He /she will also acquire skills in the usage of multimeters, soldering in	on,					
oscilloscopes, power supplies and relays.						
COURSE SYLLABUS						

Unit No.	Content of Each Unit						
1	Introduction: Measuring units. conversion to SI and CGS. Familiarization with meterscale, Vernier calliper, Screw gauge and their utility. Measure the dimension of a solid block, volume of cylindrical beaker/glass, diameter of a thin wire, thickness of metal sheet, etc. Use of Sextant to measure height of buildings, mountains, etc.	18					
2	Mechanical Skill: Concept of workshop practice. Overview of manufacturing methods:casting, foundry, machining, forming and welding. Types of welding joints and welding defects. Common materials used for manufacturing like steel, copper, iron, metal sheets, composites and alloy, wood. Concept of machine processing, introduction to common machine tools like lathe, shaper, drilling, milling and surface machines. Cutting tools, lubricating oils. Cutting of a metal sheet using blade. Smoothening of cutting edge of sheet using file. Drilling of holes of different diameter in metal sheet and wooden block. Use of bench vice and tools for fitting. Make funnel using metal sheet.	19					
3	3 Electrical and Electronic Skill: Use of Multimeter. Soldering of electrical circuitshaving discrete components (R, L, C, diode) and ICs on PCB. Operation of oscilloscope. Making regulated power supply. Timer circuit, Electronic switch using transistor and relay.						
4	Introduction to prime movers: Mechanism, gear system, wheel, Fixing of gears withmotor axel. Lever mechanism, Lifting of heavy weight using lever. braking systems, pulleys, working principle of power generation systems. Demonstration of pulley experiment.	19					
	TEXT BOOKS						
 Per Me Wo [IS Ne 	text book in Electrical Technology - B L Theraja – S. Chand and Company. rformance and design of AC machines – M.G. Say, ELBS Edn. echanical workshop practice, K.C. John, 2010, PHI Learning Pvt. Ltd. orkshop Processes, Practices and Materials, Bruce J Black 2005, 3rd Edn., E BN: 0750660732] w Engineering Technology, Lawrence Smyth/Liam Hennessy, The Education mpany of Ireland [ISBN: 0861674480]						

Renewable Energy and Energy Harvesting

Scheme	Name of the subject:	L	Т	Р	C	Semester:	Contact
Version:	Renewable Energy					Ι	Hours
	and Energy						per
2023-28	Harvesting						Week: 4
		3	1	0	4		Total
							Hours:
							60
Subject	Applicable to	Evaluatio		30	Exam	ination Dura	ation:
Code:	Program:	n	CIE	Marks	3 hour	s (Theory on	ly)
SBS	Integrated B.Sc.	(Total		70	Prere	quisite of Co	ourse: None
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks			
102 SE		100)					
3104							
Course	This course aims at p	roviding kno	owledge	of Fossil	fuels a	nd Alternate	e Sources of
Descripti	Energy, Solar energy,						
on	Hydro Energy, Piezo	electric En	ergy H	arvesting,	and	Electromagn	etic Energy
	Harvesting.						
	• The aim of	this source	ia not i	ut to imp	ort that	ratical know	ledge to the
Course			-	-			ing wherever
Objectiv	possible.	to provide u	iem wiu	i exposure			ing wherever
es	-	e student wi	ll study i	on conv	entional	energy sour	ces and their
	practical app		li study i		Chuona	r chergy sour	ces and then
	The students are		learn no	t only the	theories	s of the renew	vable
	sources of energ	-		-			
Course	possible.	<i>y</i> , out also to			periene		
Outcome	 Learn about pier 	zoelectricity.	carbon-	captured	technolo	ogies like cell	ls, batteries.
S	• The students sho	-		-		-	
	solar energy, wi		-				
	piezoelectric ma						
	thermoelectric r						
	1	COURSE	SYLLA	BUS			
Unit No.		Content of					Hours of
							Each Unit
	Fossil fuels and Altern						
1	energy, their limitation						8
	energy sources. An over						
	Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion,						

	solar energy, biomass, biochemical conversion, biogas generation,	
	geothermal energy tidal energy, Hydroelectricity.	
	Solar energy: Solar energy, its importance, storage of solar energy, solar	
	pond, nonconvective solar pond, applications of solar pond and solar	
	energy, solar water heater, flat plate collector, solar distillation, solar	
	cooker, solar green houses, solar cell, absorption air conditioning. Need	
	and characteristics of photovoltaic (PV) systems, PV models and	
	equivalent circuits, and sun tracking systems.	
	Wind Energy harvesting: Fundamentals of Wind energy, Wind	
	Turbines and different electrical machines in wind turbines, Power	
	electronic interfaces, and grid interconnection topologies.	
2	Ocean Energy: Ocean Energy Potential against Wind and Solar, Wave	8
	Characteristics and Statistics, Wave Energy Devices. Tide characteristics	
	and Statistics, Tide Energy Technologies, Ocean Thermal Energy,	
	Osmotic Power, Ocean Bio-mass.	
	Geothermal Energy: Geothermal Resources, Geothermal Technologies.	
3	Hydro Energy: Hydropower resources, hydropower technologies,	7
	environmental impact of hydro power sources.	
	Piezoelectric Energy harvesting: Introduction, Physics and	
	characteristics of piezoelectric effect, materials and mathematical	
	description of piezoelectricity, Piezoelectric parameters and modeling	
	piezoelectric generators, Piezoelectric Energy harvesting applications,	
4	Human power.	7
	Electromagnetic Energy Harvesting: Linear generators, physics	
	mathematical models, recent applications Carbon captured technologies,	
	cell, batteries, power consumption, Environmental issues and Renewable	
	sources of energy, sustainability.	
	TEXT BOOKS	
• No	on-conventional energy sources - G.D Rai - Khanna Publishers, New Delhi	
	lar energy - M P Agarwal - S Chand and Co. Ltd.	
	lar energy - Suhas P Sukhative Tata McGraw - Hill Publishing Company Lt	d.
	odfrey Boyle, "Renewable Energy, Power for a sustainable future", 2004, Ox	
	niversity Press, in association with The Open University.	
	P Jayakumar, Solar Energy: Resource Assessment Handbook, 2009	
	Balfour, M.Shaw and S. Jarosek, Photovoltaics, Lawrence J Goodrich (USA)	
	, , , , , , , , , , , , , , , , , , , ,	

Basic Instrumentation Skills

Scheme	Name of the subject:	L	Т	Р	С	Semester:	Contact
Version:	Basic Instrumentation					Ι	Hours
	Skills						per
2023-28							Week:
							2+1+2
		2	1	2	4		Total
							Hours:
							30+15+30
Subject	Applicable to	Evaluatio		30		ination Dur	
Code:	Program:	n	CIE	Marks		s (Practical o	
SBS SBS	Integrated B.Sc.	(Total		70	Prere	quisite of Co	ourse: None
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks			
103 SE		100)					
2124							
Course	This course is to get exp			-			
Descripti	hands-on mode. Experin	ments listed	below ar	e to be do	ne in co	ntinuation of	the topics.
on							
	 Develop ski 	lls to use bas	sic electr	ical instru	ments li	ke multimet	er, electronic
Course	-	athode ray, a					
Objectiv	 Acquire effi 	iciency in m	naking s	ignal gene	erators a	and analysis	of obtained
es	signals.	-	-			-	
	• Learn to und	lerstand and	use vario	ous types o	of digita	l instruments	5.
	 Develop known 	owledge of n	naking n	neasureme	ents with	n Impedance	Bridges and
	Q meters.						
	After the successful co	ompletion of	f the co	ourse the	student	is expected	to have the
Course	necessary working k	nowledge o	on accu	iracy, pre	ecision,	resolution,	range and
Outcome	errors/uncertainty in me	easurements.	He/she	will acqui	re hands	s on skills in	the usage of
S	oscilloscopes, multime				-		-
	voltage probes. He/she a		0		U	e working ar	nd operations
	of LCR Bridge, generat				5.		
		COURSE	SYLLA	ABUS			
Unit No.		Content of	Each U	J nit			Hours of
				-			Each Unit
							-
1	Basic of Measuremen					-	19
1	resolution range etc.					-	17
	Multimeter: Principles of measurement of dc voltage and dc current, ac						

	voltage, ac current and resistance. Specifications of a multimeter and their	
	significance.	
	Electronic Voltmeter: Advantage over conventional multimeter for	
	voltage measurement with respect to input impedance and sensitivity.	
	Principles of voltage measurement (block diagram only). Specifications	
	of an electronic Voltmeter/ Multimeter and their significance. AC	
	millivoltmeter: Type of AC milli voltmeters: Amplifier- rectifier, and	
	rectifier- amplifier. Block diagram ac millivoltmeter, specifications and	
	their significance.	
	Cathode Ray Oscilloscope: Block diagram of basic CRO. Construction	
	of CRT, Electron gun, electrostatic focusing and acceleration	
	(Explanation only- no mathematical treatment), brief discussion on	
	screen phosphor, visual persistence & chemical composition. Time base	
2	operation, synchronization. Front panel controls. Specifications of a CRO	19
	and their significance.	
	Use of CRO for the measurement of voltage (dc and ac frequency, time	
	period. Special features of dual trace, introduction to digital oscilloscope,	
	probes. Digital storage Oscilloscope: Block diagram and principle of	
	working.	
	Signal Generators and Analysis Instruments: Block diagram,	
	explanation and specifications of low frequency signal generators. pulse	
	generator, and function generator. Brief idea for testing, specifications.	
3	Distortion factor meter, wave analysis.	19
	Impedance Bridges & Q-Meters: Block diagram of bridge. working	
	principles of basic(balancing type) RLC bridge. Specifications of RLC	
	bridge. Block diagram & working principles of a Q- Meter. Digital LCR	
	bridges.	
	Digital Instruments: Principle and working of digital meters.	
	Comparison of analog & digital instruments. Characteristics of a digital	
1	meter. Working principles of digital voltmeter.	10
4	Digital Multimeter: Block diagram and working of a digital multimeter.	18
	Working principle of time interval, frequency and period measurement	
	using universal counter/frequency counter, time- base stability, accuracy	
	and resolution.	
	TEXT BOOKS	
• Te	ext book in Electrical Technology - B L Theraja - S Chand and Co.	
	prformance and design of AC machines - M G Say ELBS Edn.	
	gital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.	
	ogic circuit design, Shimon P. Vingron, 2012, Springer.	

- Digital Electronics, Subrata Ghoshal, 2012, Cengage Learning.
- Electronic Devices and circuits, S. Salivahanan & N. S.Kumar, 3rd Ed., 2012, Tata Mc-Graw Hill
- Electronic circuits: Handbook of design and applications, U.Tietze, Ch.Schenk, 2008, Springer
- Electronic Devices, 7/e Thomas L. Floyd, 2008, Pearson India

The test of lab skills will be of the following test items:

- 1. Use of an oscilloscope.
- 2. CRO as a versatile measuring device.
- 3. Circuit tracing of Laboratory electronic equipment,
- 4. Use of Digital multimeter/VTVM for measuring voltages
- 5. Circuit tracing of Laboratory electronic equipment,
- 6. Winding a coil / transformer.
- 7. Study the layout of receiver circuit.
- 8. Trouble shooting a circuit
- 9. Balancing of bridges

Laboratory Exercises:

1. To observe the loading effect of a multimeter while measuring voltage across a low resistance and high resistance.

- 2. To observe the limitations of a multimeter for measuring high frequency voltage and currents.
- 3. To measure Q of a coil and its dependence on frequency, using a Q- meter.
- 4. Measurement of voltage, frequency, time period and phase angle using CRO.
- 5. Measurement of time period, frequency, average period using universal counter/ frequency counter.
- 6. Measurement of rise, fall and delay times using a CRO.
- 7. Measurement of distortion of a RF signal generator using distortion factor meter.
- 8. Measurement of R, L and C using a LCR bridge/ universal bridge.

Open Ended Experiments:

- 1. Using a Dual Trace Oscilloscope
- 2. Converting the range of a given measuring instrument (voltmeter, ammeter)

Weather Forecasting

Scheme Version:	Name of the subject: Weather Forecasting	L	Т	Р	C	Semester: I	Contact Hours
2023-28							per Week: 3+1
		3	1	0	4		Total Hours: 45+15
Subject	Applicable to	Evaluatio		30	Exam	ination Dura	
Code:	Program:	n	CIE	Marks		s (Theory only	
SBS	Integrated B.Sc.	(Total		70		quisite of Cou	
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks			
104 SE 3104		100)					
Course Descripti on Course Objectiv	 The aim of this course is not just to impart theoretical knowledge to the students but to enable them to develop an awareness and understanding regarding the causes and effects of different weather phenomenon and basic forecasting technique. To understand the fundamentals of classical mechanics To get familiar with various classical mechanical problems related to Lagrangian & Hamiltonian formulations 						
es	 To aware the students about applications of classical mechanics in various science branches 						
Course Outcome s	 Acquire basic knowledge of the elements of the atmosphere, its composition at various heights, variation of pressure and temperature with height. To learn basic techniques to measure temperature and its relation with cyclones and anti-cyclones. Knowledge of simple techniques to measure wind speed and its directions, humidity and rainfall. Absorption, emission and scattering of radiations in atmosphere. Radiation laws. Knowledge of global wind systems, jet streams, local thunderstorms, tropical cyclones, tornadoes and hurricanes. 						

 Knowledge of climate and its classification. Understanding various causes of climate change like global warming, air pollution, aerosols, ozone depletion, acid rain. Develop skills needed for weather forecasting, mathematical simulations, weather forecasting methods, types of weather forecasting, role of satellite observations in weather forecasting, weather maps etc. Uncertainties in predicting weather based on statistical analysis. 					
	COURSE SYLLABUS				
Unit No.	Content of Each Unit	Hours of Each Unit			
1	Introduction to atmosphere: Elementary idea of atmosphere: physical structure and composition; compositional layering of the atmosphere; variation of pressure and temperature with height; air temperature; requirements to measure air temperature; temperature sensors: types; atmospheric pressure: its measurement; cyclones and anticyclones: its characteristics.	15			
2	 Measuring the weather: Wind; forces acting to produce wind; wind speed direction: units, its direction; measuring wind speed and direction; humidity, clouds and rainfall, radiation: absorption, emission and scattering in atmosphere; radiation laws. Weather systems: Global wind systems; air masses and fronts: classifications; jet streams; local thunderstorms; tropical cyclones: classification; tornadoes; hurricanes. 	15			
3	Climate and Climate Change : Climate: its classification; causes of climate change; global warming and its outcomes; air pollution; aerosols, ozone depletion, acid rain, environmental issues related to climate.	15			
4	Basics of weather forecasting : Weather forecasting: analysis and its historical background; need of measuring weather; types of weather forecasting; weather forecasting methods; criteria of choosing weather station; basics of choosing site and exposure; satellites observations in weather forecasting; weather maps; uncertainty and predictability; probability forecasts.	ather ather as in 15			

TEXT BOOKS

- Aviation Meteorology, I.C. Joshi, 3rd edition 2014, Himalayan Books
- The weather Observers Hand book, Stephen Burt, 2012, Cambridge University Press.
- Meteorology, S.R. Ghadekar, 2001, Agromet Publishers, Nagpur.
- Text Book of Agrometeorology, S.R. Ghadekar, 2005, Agromet Publishers, Nagpur.
- Why the weather, Charls Franklin Brooks, 1924, Chpraman & Hall, London.
- Atmosphere and Ocean, John G. Harvey, 1995, The Artemis Press.

LIST OF DEMONSTRATIONS AND EXPERIMENTS

- 1. Study of synoptic charts & weather reports, working principle of weather station.
- 2. Processing and analysis of weather data:
- (a) To calculate the sunniest time of the year.
- (b) To study the variation of rainfall amount and intensity by wind direction.
- (c) To observe the sunniest/driest day of the week.
- (d) To examine the maximum and minimum temperature throughout the year.
- (e) To evaluate the relative humidity of the day.
- (f) To examine the rainfall amount month wise.

3. Exercises in chart reading: Plotting of constant pressure charts, surfaces charts, upper wind charts and its analysis.

4. Formats and elements in different types of weather forecasts/ warning (both aviation and non aviation)

Computational Physics Skills

Scheme Version:	Name of the subject: Computational Physics Skills	L	Т	Р	C	Semester: II	Contact Hours per Week: 2+1+2
2023-28		2	1	2	4		Total Hours: 30+15+30
Subject Code:	Applicable to Program:	Evaluatio n	CIE	30 Marks		ination Dur	
SBS PHY 03 201 SE 2124	Integrated BSc-MSc Physics	(Total Marks: 100)	TEE	70 Marks	Prere None	quisite of C	ourse:
#		Con	tents				Hours
1	 Introduction: Importance of computers in Physics, the paradigm for solving physics problems for solution. Usage of Linux as an Editor. Algorithms and Flowcharts: Algorithm: Definition, properties and development. Flowchart: Concept of flowchart, symbols, guidelines, types. Examples: Cartesian to Spherical Polar Coordinates, Roots of Quadratic Equation, Sum of two matrices, Sum and Product of a finite series, calculation of sin(x) as a series, algorithm for plotting (i) Lissajous figures and (2) trajectory of a projectile thrown at an angle with the horizontal. Scientific Programming: Some fundamental Linux Commands (Internal and External commands). Development of FORTRAN, Basic elements of FORTRAN: Character Set, Constants and their types, Variables and their types, Keywords, Variable Declaration and concept of instruction and program. Operators: Arithmetic, Relational, Logical and Assignment Operators. Expressions: Arithmetic, Relational, Logical, Character, and Assignment Expressions. Fortran Statements: I/O Statements, Layout of Fortran Program, Format of writing Program and concept of coding, Initialization and Replacement Logic. Examples from physics problems. 					19	
2	Control Statements: T Branching Statements (IF, SELECT CASE Statements (DO-CONT Nested DO Loops), Computed GOTO, As Types of Arrays, DIME	19					

	Functions and Subroutines (Arithmetic Statement Function, Function Subprogram and Subroutine), RETURN, CALL, COMMON and EQUIVALENCE Statements), Structure, Disk I/O Statements, open a file, writing in a file, reading from a file. Examples from physics problems.	
3	 Scientific word processing: Introduction to LaTeX: TeX/LaTeX word processor, preparing a basic LaTeX file, Document classes, Preparing an input file for LaTeX, Compiling LaTeX File, LaTeX tags for creating different environments, Defining LaTeX commands and environments, Changing the type style, Symbols from other languages. Equation representation: Formulae and equations, Figures and other floating bodies, Lining in columns- Tabbing and tabular environment, Generating the table of contents, bibliography and citation, Making an index and glossary, List making environments, Fonts, Picture environment and colors, errors. 	19
4	Visualization: Introduction to graphical analysis and its limitations. Introduction to Gnuplot. importance of visualization of computational and computational data, basic Gnuplot commands: simple plots, plotting data from a file, saving and exporting, multiple data sets per file, physics with Gnuplot (equations, building functions, user-defined variables and functions), Understanding data with Gnuplot.	18
	TEXT BOOKS	
• Co • La	troduction to Numerical Analysis, S.S. Sastry, 5th Edn., 2012, PHI Learning omputer Programming in Fortran 77". V. Rajaraman (Publisher: PHI). aTeX–A Document Preparation System", Leslie Lamport (Second Edition, Ad 994).	
• Sc	nuplot in action: understanding data with graphs, Philip K Janert, (Manning 2 chaum's Outline of Theory and Problems of Programming with Fortran, S L be, 1986Mc-Graw Hill Book Co.	

- Computational Physics: An Introduction, R. C. Verma, et al. New Age International Publishers, New Delhi(1999)
- A first course in Numerical Methods, U.M. Ascher and C. Greif, 2012, PHI Learning Elementary Numerical Analysis, K.E. Atkinson, 3rd Ed., 2007, Wiley India Edition.

Programming Exercises:

1. Exercises on syntax on the usage of FORTRAN

2. Usage of GUI Windows, Linux Commands, familiarity with DOS commands and working in an editor to write sources codes in FORTRAN.

- 3. To print out all-natural even/ odd numbers between given limits.
- 4. To find maximum, minimum and range of a given set of numbers.
- 5. Calculating Euler number using exp(x) series evaluated at x=1

Hands-on exercises:

1. To compile a frequency distribution and evaluate mean, standard deviation, etc.

2. To evaluate sum of finite series and the area under a curve.

3. To find the product of two matrices

4. To find a set of prime numbers and Fibonacci series.

5. To write a program to open a file and generate data for plotting using Gnuplot.

6. Plotting the trajectory of a projectile projected horizontally.

7. Plotting the trajectory of a projectile projected making an angle with the horizontally.

8. Creating an input Gnuplot file for plotting data and saving the output for seeing on the screen. Saving it as an eps file and as a pdf file.

9. To find the roots of a quadratic equation.

10. Motion of a projectile using simulation and plot the output for visualization.

11. Numerical solution of the equation of motion of simple harmonic oscillator and plot the outputs for visualization.

12. Motion of a particle in a central force field and plot the output for visualization.

Applied Optics

Scheme Version:	Name of the subject: Mechanical Drawing	L	Т	Р	C	Semester: II	Contact Hours
version.	Weenamear Drawing					11	per
2023-28							Week:
							2+1+2
		2	1	2	4		Total
							Hours:
							30+15+30
Subject	Applicable to	Evaluatio		30	Exam	ination Dura	tion:
Code:	Program:	n	CIE	Marks	3 hour	s (Practical of	nly)
SBS	Integrated B.Sc.	(Total		70	Prere	quisite of Co	urse: None
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks			
202 SE		100)					
2124							
Course	This course aims at pr	oviding know	wledge	of Sources	s and D	Detectors, Fou	rier Optics,
Descripti	Holography and Photon	ics: Fibre Op	otics				
on							
Course	• This course	will help in	understa	nding abo	ut the la	asers and dete	ectors,
Objectiv	Holography	Optical fibr	e and the	eir applica	tions.		
es							
Course Outcome s	 This course will enable the student to get: Familiar with optical phenomena and technology. Qualitative understanding of basic lasing mechanism, types of Lasers, characteristics of Laser Light, types of Lasers, and its applications in developing LED, Holography. The idea of propagation of electromagnetic wave in a nonlinear media – Fibre optics as an example will enable the student to practice thinking in a logical process, which is essential in science. Experiments in this course will allow the students to discuss in peer groups to develop their cooperative skills and reinforce their understanding of concepts. 						
Unit No.		Contont of	Fach I	Init		I	Houwaaf
Unit No.	Content of Each Unit						Hours of Each Unit

	Sources and Detectors			
	Lasers, Spontaneous and stimulated emissions, Theory of laser action,			
	Einstein's coefficients, Light amplification, Characterization of laser			
	beam, He-Ne laser, Semiconductor lasers.			
	Experiments on Lasers:			
	-			
	a. Determination of the grating radial spacing of the Compact Disc (CD)			
	by reflection using He-Ne or solid state laser.			
1	b. To find the width of the wire or width of the slit using diffraction	19		
	pattern obtained by a He-Ne or solid state laser.			
	c. To find the polarization angle of laser light using polarizer and analyzer			
	d. Thermal expansion of quartz using laser			
	Experiments on Semiconductor Sources and Detectors:			
	a. V-I characteristics of LED			
	b. Study the characteristics of solid state laser			
	c. Study the characteristics of LDR			
	d. Photovoltaic Cell			
	e. Characteristics of IR sensor			
	Fourier Optics			
	Concept of Spatial frequency filtering, Fourier transforming property of			
	a thin lens			
	Experiments on Fourier Optics:			
	a. Fourier optic and image processing1. Optical image addition/subtraction			
	2. Optical image differentiation			
	3. Fourier optical filtering			
	4. Construction of an optical 4f system			
2	b. Fourier Transform Spectroscopy	19		
	Fourier Transform Spectroscopy (FTS) is a powerful method for			
	measuring emission and absorption spectra, with wide application in			
	atmospheric remote sensing, NMR spectrometry and forensic science.			
	Experiment:			
	1. To study the interference pattern from a Michelson interferometeras			
	a function of mirror separation in the interferometer. The			
	resulting interferogram is the Fourier transform of the power			
	spectrum of the source. Analysis of experimental interferograms			
	allows one to determine the transmission characteristics of several			
	interference filters. Computer simulation can also be done.			

	Holography	
3	 Basic principle and theory: coherence, resolution, Types of holograms, white light reflection hologram, application of holography in microscopy, interferometry, and character recognition Experiments on Holography and interferometry: Recording and reconstructing holograms Constructing a Michelson interferometer or a Fabry Perot interferometer Measuring the refractive index of air Constructing a Sagnac interferometer Constructing a Mach-Zehnder interferometer 	19
4	 Photonics: Fibre Optics Optical fibres and their properties, Principal of light propagation through a fibre, The numerical aperture, Attenuation in optical fibre and attenuation limit, Single mode and multimode fibres, Fibre optic sensors: Fibre Bragg Grating Experiments on Photonics: Fibre Optics a. To measure the numerical aperture of an optical fibre b. To study the variation of the bending loss in a multimode fibre c. To determine the mode field diameter (MFD) of fundamental mode in a single-mode fibre by measurements of its far field Gaussian pattern d. To measure the near field intensity profile of a fibre and study its refractive index profile e. To determine the power loss at a splice between two multimode fibre 	18
 ASER Fibre Nonli Optica Optica Optica 	TEXT BOOKS amental of optics, F. A. Jenkins & H. E. White, 1981, Tata McGraw hill. RS: Fundamentals & applications, K.Thyagrajan & A.K.Ghatak, 2010, Tata N optics through experiments, M.R.Shenoy, S.K.Khijwania, et.al. 2009, Viva E near Optics, Robert W. Boyd, (Chapter-I), 2008, Elsevier. s, Karl Dieter Moller, Learning by computing with model examples, 2007, Sj al Systems and Processes, Joseph Shamir, 2009, PHI Learning Pvt. Ltd. electronic Devices and Systems, S.C. Gupta, 2005, PHI Learning Pvt. Ltd. al Physics, A.Lipson, S.G.Lipson, H.Lipson, 4th Edn., 1996, Cambridge Uni	3ooks pringer.

Electrical Circuits and Network Skills

Scheme	Name of the subject:	L	Т	Р	C	Semester:	Contact
Version:	Electrical Circuits and					II	Hours
	Network Skills						per
2023-28							Week:
							2+1+2
		2	1	2	4		Total
							Hours:
							30+15+30
Subject	Applicable to	Evaluatio		30	Exam	ination Dura	ation:
Code:	Program:	n	CIE	Marks	3 hour	S	
SBS	Integrated B.Sc.	(Total		70	Prere	quisite of Co	ourse: None
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks		-	
203 SE		100)					
2124							
Course	The aim of this course is	s to enable th	e studen	ts to desig	n and tr	ouble shoots	the electrical
Descripti	circuits, networks and a	ppliances the	rough ha	nds-on mo	ode		
on							
Course	-		t the ele	ectrical ci	rcuits,	networks and	d appliances
Objectiv	through han						
es				earning el	ectrical	wirings and	repairing of
		hold equipm					
Course	After completion of this	s course, stud	lents wo	uld be able	e to:		
Outcome	• Design and trou	hleshoot cert	ain elect	rical circu	its and	domestic ann	liances
S	along with the u						nunces
e	 Do electrical wi 	-		, 518115 01	11050 u	rrianees.	
	 This knowledge 	0 1	U	l of the stu	idents fo	or various ele	ectrical
	repairing and se	-					
	1	8 r P					
	COURSE SYLLABUS						
Unit No.		Content of	Each U	J nit			Hours of
							Each Unit
1	Basic Electricity Prine	-	•				19
	Ohm's law. Series, p	arallel, and	series-	parallel c	ombina	tions. AC	

	Electricity and DC, Electricity. Familiarization with multimeter,	
	voltmeter and ammeter	
	Understanding Electrical Circuits: Main electric circuit elements and	
	their combination. Rules to analyze DC sourced electrical circuits.	
	Current and voltage drop across the DC circuit elements. Single-phase	
	and three-phase alternating current sources. Rules to analyze AC sourced	
	electrical circuits. Real, imaginary and complex power components of	
	AC source. Power factor. Saving energy and money	
	Electrical Drawing and Symbols: Drawing symbols. Blueprints.	
	Reading Schematics. Ladder diagrams. Electrical Schematics. Power	
2	circuits. Control circuits. Reading of circuit schematics. Tracking the	18
	connections of elements and identify current flow and voltage drop.	
	Generators and Transformers: DC Power sources. AC/DC generators.	
	Inductance, capacitance, and impedance. Operation of transformers.	
	Electric Motors: Single-phase, three-phase & DC motors. Basic design.	
	Interfacing DC or AC sources to control heater and motors, speed and	
3	power of ac motor.	19
	Solid state devices: Resistors, inductors and capacitors, Diode and	
	rectifiers, Components in series or in shunt, Response of Inductors and	
	capacitors with AC or DC sources.	
	Electrical Protections: Relays, fuses and disconnect switches, Circuit	
	breakers, Overload devices. Ground-fault protection. Grounding and	
	isolating. Phase reversal. Surge protection. Interfacing DC or AC sources	
	to control elements (relay protection device).	
4	Electrical Wiring: Different types of conductors and cables. Basics of	19
	wiring-Star and delta connection. Voltage drop and losses across cables	
	and conductors. Instruments to measure current, voltage, power in DC	
	and AC circuits. Insulation. Solid and stranded cable. Conduit. Cable	
	trays. Splices: wirenuts, crimps, terminal blocks, split bolts, and solder.	
	Preparation of extension board.	
	TEXT BOOKS	
• A	text book in Electrical Technology - B L Theraja - S Chand & Co.	
	text book of Electrical Technology - A K Theraja	
• Pe	erformance and design of AC machines - M G Say ELBS Edn.	

Radiation Safety

Scheme	Name of the subject:	L	Т	Р	C	Semester:	Contact
Version:	Radiation Safety					II	Hours
2023-28							per Week:
2023-28							3+1
		3	1	0	4		Total
							Hours:
							45+15
Subject	Applicable to	Evaluatio		30	Exam	ination Dura	ntion:
Code:	Program:	n	CIE	Marks	3 hour	S	
SBS	Integrated B.Sc.	(Total		70	Prere	quisite of Co	urse: None
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks			
204 SE		100)					
3104							
Course	This course aims at pr	oviding kno	wledge	of Basics	of Ator	nic and Nucl	ear Physics,
Descripti	Interaction of Radiation	on with mat	ter: Typ	es of Rad	liation,	Radiation de	etection and
on	monitoring devices: R	-	antities	and Units	, Radia	tion safety r	nanagement,
	Application of nuclear	echniques.					
Course	General con	cepts of nucl	ei, nucle	ear forces a	and aton	nic physics ar	re studied.
Objectiv	 Basic knowl 	edge about n	uclear ra	adiation ty	pes and	radiation det	ectors.
es							
	De avvare and w	donaton d the	horondo	of modiati	on and t	he cofety me	agunas to
	• Be aware and up		azarus		on and i	ine safety mea	asures to
	guard against th		acts of t	ha atomia	and muc	loon Dharico	anasially
Course	• Revise or learn the radiations th	-				•	specially
Outcome	 Have a compreh 	-					motter with
S	radiations like g		0				
	appropriate mat		aipila la	iys, neuro			smerunig by
	 Know about the 		ations a	nd their sa	fety lim	its the devise	es to detect
	and measure rad				•		
	counter.	auton, such		01501-1 v 100			manon
	counter.	COURSE	SYLLA	ABUS			
	l	~ ~ ~	— – –	.		1	
Unit No.		Content of	Each U	J nit			Hours of
							Each Unit

1	Basics of Atomic and Nuclear Physics : Basic concept of atomic structure; X rays characteristic and production; concept of bremsstrahlung and auger electron, The composition of nucleus and its properties, mass number, isotopes of element, spin, binding energy, stable and unstable isotopes, law of radioactive decay, Mean life and half life, basic concept of alpha, beta and gamma decay, concept of cross section and kinematics of nuclear reactions, types of nuclear reaction, Fusion, fission.	18
2	Interaction of Radiation with matter: Types of Radiation: Alpha, Beta, Gamma and Neutron and their sources, sealed and unsealed sources, Interaction of Photons - Photo-electric effect, Compton Scattering, Pair Production, Linear and Mass Attenuation Coefficients, Interaction of Charged Particles: Heavy charged particles - Beth-Bloch Formula, Scaling laws, Mass Stopping Power, Range, Straggling, Channeling and Cherenkov radiation. Beta Particles- Collision and Radiation loss (Bremsstrahlung), Interaction of Neutrons- Collision, slowing down and Moderation.	19
3	Radiation detection and monitoring devices: Radiation Quantities and Units: Basic idea of different units of activity, KERMA, exposure, absorbed dose, equivalent dose, effective dose, collective equivalentdose, Annual Limit of Intake (ALI) and derived Air Concentration (DAC). Radiation detection: Basic concept and working principle of gasdetectors (Ionization Chambers, Proportional Counter, Multi-Wire Proportional Counters (MWPC) and Gieger Muller Counter), Scintillation Detectors(Inorganic and Organic Scintillators), Solid States Detectors and Neutron Detectors, Thermo luminescent Dosimetry.	19
4	 Radiation safety management: Biological effects of ionizing radiation, Operational limits and basics of radiation hazards evaluation and control: radiation protection standards, International Commission on Radiological Protection (ICRP) principles, justification, optimization, limitation, introduction of safety and risk management of radiation. Nuclear waste and disposal management. Brief idea about Accelerator driven Sub- critical system (ADS) for waste management. Application of nuclear techniques: Application in medical science (e.g., MDL DET, Defention Intercent Communication) 	19
	MRI, PET, Projection Imaging Gamma Camera, radiation therapy),Archaeology, Art, Crime detection, Mining and oil. Industrial Uses: Tracing, Gauging, Material Modification, Sterization, Food preservation.	

TEXT BOOKS

- W.E. Burcham and M. Jobes Nuclear and Particle Physics Longman (1995)
- G.F.Knoll, Radiation detection and measurements
- Thermoluninescense Dosimetry, Mcknlay, A.F., Bristol, Adam Hilger (Medical Physics Handbook 5)
- W.J. Meredith and J.B. Massey, "Fundamental Physics of Radiology". John Wright and Sons, UK, 1989.
- J.R. Greening, "Fundamentals of Radiation Dosimetry", Medical Physics Hand Book Series, No.6, Adam Hilger Ltd., Bristol 1981.
- Practical Applications of Radioactivity and Nuclear Radiations, G.C. Lowental and P.L. Airey, Cambridge University Press, U.K., 2001
- A. Martin and S.A. Harbisor, An Introduction to Radiation Protection, John Willey & Sons, Inc. New York, 1981

GE PAPERS [Physics]

Offered by Department of Physics and Astrophysics to students of other departments

- 1. Mechanics [GE] (Theory + Laboratory)
- 2. Electromagnetic Theory [GE] (Theory + Laboratory)
- 3. Waves and Optics [GE] (Theory + Laboratory)
- 4. Thermal Physics [GE] (Theory + Laboratory)
- 5. Modern Physics (Theory + Laboratory)

Mechanics [GE]

Scheme Version: 2023-28	Name of the subject: Mechanics [GE]	L	T	Р	C	Semester: I	Contact Hours per Week:
		3	1	0	4		3+1 Total Hours: 45+15
Subject Code: SBS PHY 03 101 GE 3104	Applicable to Program: Integrated B.Sc. M.Sc. (Physics)	Evaluatio n (Total Marks: 100)	CIE TEE	30 Marks 70 Marks	3 hour	ination Dura (Theory) quisite of Co	ation:
Course Description	This course aims to introduce elementary concepts of Mechanics to the students so that they are able to understand fundamental aspects of forces, nature of forces and their applications. Objective here is that with the comparatively advanced mathematics tools than their high school curriculum, they will be able to apply these concepts in other branches of Physics and Science in general.						of forces and y advanced
Course Objectives	 To understand the fundamentals of Physics To get familiar with various concepts of mechanical problems related to Gravitational Force, spring force and oscillations. To inform the students about applications of mechanics in other science branches. To have a clear understanding about concepts related to space, time and relative motion. 						
Course Outcomes	 After completion of this course, students would be able to: Understand the fundamentals of dynamics in constant as well as variable mass systems Learn about various concepts related to rotational dynamics and elasticity. Learn about gravitational force and spring force Understand the basic inception of space and time, and relative motion in inertial as well as non-inertial frames. COURSE SYLLABUS 						
Unit No.		Content					Hours of Each Unit
1	Vector Analysis: product), gradient, Integration, Line, s Gauss-divergence th	divergence, ourface and	Curl and volume	d their sig integrals	gnifican of Vec	ce, Vector ctor fields,	15

	only).					
	Laws of Motion: Frames of reference. Newton's Laws of motion. Dynamics of a system of particles. Centre of Mass.					
2	 Momentum and Energy: Conservation of momentum. Motion of rockets. Work and energy. Conservative forces. Force as the gradient of potential energy. Law of Conservation of Energy. Rotational Motion: Angular velocity and angular momentum. Torque. Conservation of angular momentum. 	15				
	Oscillations: Simple harmonic motion. Differential equation of SHM and its solutions. Kinetic and Potential Energy, Total Energy and their time averages. Superposition of Two Collinear and Perpendicular Harmonic oscillations: Lissajous Figures.					
3	Gravitation: Newton's Law of Gravitation. Motion of a particle in a central force field (motion is in a plane, angular momentum is conserved, areal velocity is constant). Kepler's Laws (statement only). Satellite in circular orbit and applications. Geosynchronous orbits. Basic idea of global positioning system (GPS). Weightlessness. Physiological effects on astronauts.	15				
4	 Elasticity: Hooke's law - Stress-strain diagram - Elastic moduli- Relation between elastic constants - Poisson's Ratio-Expression for Poisson's ratio in terms of elastic constants - Work done in stretching and work done in twisting a wire. Determination of Rigidity modulus using Torsional pendulum and by Searle's method. Special Theory of Relativity: Constancy of speed of light. Postulates of Special Theory of Relativity. Length contraction. Time dilation. Relativistic addition of velocities. 	15				
TEXT BOOKS						
 Mechanics Physics – I Engineering 	Physics. F.W. Sears, M.W. Zemansky and H.D. Young, 13/e, 1986. Ad s Berkeley Physics, v.1: Charles Kittel, et. al. 2007, Tata McGraw-Hill. Resnick, Halliday & Walker 9/e, 2010, Wiley ng Mechanics, Basudeb Bhattacharya, 2nd edn., 2015, Oxford University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.					

Mechanics Laboratory [GE]

Scheme Version:	Name of the subject:	L	Т	Р	C	Semester: I	Contact Hours
2023-28	Mechanics Laboratory [GE]						per Week: 4
2023-28		0	0	4	2		Total Hours: 60
Subject	Applicable to	Evaluatio		15	Exam	ination Dura	ation:
Code: SBS	Program:	n	CIE	Marks	3 hour	rs (Practical)	
<u>PHY 03</u>	Integrated B.Sc.	(Total		35	Prere	quisite of Co	ourse:
<u>102 GE</u>	M.Sc. (Physics)	Marks:	TEE	Marks	None		
<u>0042</u>		50)					
#		List of Ex	-				Hours
1	 Measurements of length (or diameter) using vernier caliper, screw gauge and travelling microscope. To determine the Height of a Building using a Sextant. To determine the Moment of Inertia of a Flywheel. To determine the Young's Modulus of a Wire by Optical Lever Method. To determine the Modulus of Rigidity of a Wire by Maxwell's needle. To determine the Elastic Constants of a Wire by Searle's method. To determine g by Bar Pendulum. To determine g by Kater's Pendulum. To study the Motion of a Spring and calculate (a) Spring Constant, (b) g. To determine g and velocity for a freely-falling body using Digital-Timing technique. To investigate the motion of coupled oscillators. 					at. ical Lever Maxwell's V Searle's a) Spring	60
 Panig Ceng Praka 	a, C.L. 2015. B.Sc. Prag grahi, S. and Mallick, H gage Learning India. ash, I. and Ramakrishna i: Kitab Mahal.	ctical Physics 3. 2015. Engi	neering	ion. New Practical	Physics.	I Edition. N	ew Delhi:

Electromagnetic Theory [GE]

Scheme Version: 2023-28	Name of the subject: Electromagnetic Theory [GE]	L	Τ	Р	С	Semester: II	Contact Hours per Week: 3+1		
		3	1	0	4		Total Hours: 45+15		
Subject	Applicable to	Evaluatio		30	Exam	Examination Duration:			
Code:	Program:	n	CIE	Marks	3 hours (Theory)				
SBS	Integrated B.Sc.	(Total		70		quisite of Co	ourse:		
PHY 03 201 GE 3104	M.Sc. (Physics)	Marks: 100)	TEE	Marks	None				
Course Descripti on	This course aims at providing knowledge of Electricity and Magnetism which covers the topics of Electric Field and Electric Potential, Electrostatic energy of system of charges, Dielectric Properties of Matter, Magnetic Field, Magnetic Properties of Matter, Electromagnetic Induction, Electrical Circuits, Network Theorems and Ballistic Galvanometer						n of charges, of Matter,		
Course Objectiv es	 This course will help in understanding basic concepts of electricity and magnetism and their applications. Basic course in electrostatics will equips the student with required prerequisites to understand electrodynamics phenomena. 								
Course Outcome s	 After going through the course, the student should be able to Demonstrate Coulomb's law for the electric field, and apply it to systems of point charges as well as line, surface, and volume distributions of charges. Explain and differentiate the vector (electric fields, Coulomb's law) and scalar (electric potential, electric potential energy) formalisms of electrostatics. Apply Gauss's law of electrostatics to solve a variety of problems. Articulate knowledge of electric current, resistance and capacitance in terms of electric field and electric potential. 								
COURSE SYLLABUS									
Unit No.							Hours of Each Unit		
1	Electrostatics: Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications of Gauss theorem. Electric potential as line integral of electric field. Capacitance of an isolated spherical conductor.15Parallel plate, spherical and cylindrical condenser. Energy per unit volume in electrostatic fields. Dielectric medium, Polarisation,15						15		
	Displacement vector.								

	capacitor completely filled with dielectric.			
2	Magnetostatics:Biot-Savart's law and its applications- straight conductor, circular coil, solenoid carrying current. Divergence and curl of magnetic field. Magnetic vector potential. Ampere's circuital law.Magnetic properties of materials:Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Brief introduction of dia-, para-and ferro- magnetic materials.	14		
3	 Electromagnetic Induction: Faraday's laws of electromagnetic induction, Lenz's law. Energy stored in magnetic field. Maxwell's equations and Electromagnetic wave propagation: Equation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectric medium. 	15		
4	 Interference: Interference: Division of amplitude and division of wavefront. Young's Double Slit experiment. Phase change on reflection: Interference in Thin Films: parallel and wedge-shaped films. Newton's Rings: measurement of wavelength and refractive index. Michelson's Interferometer: Idea of form of fringes (no theory needed). Diffraction: Fresnel and Fraunhofer diffraction. Fraunhofer diffraction: Single slit, Double Slit and Diffraction grating. Polarization: Plane polarized light – production and analysis. Circular and elliptical polarization. 			
	TEXT BOOKS			
ElectriElectriUniver	icity and Magnetism, Edward M. Purcell, 1986, McGraw-Hill Education icity & Magnetism, J.H. Fewkes & J.Yarwood. Vol. I, 1991, Oxford Univ. P icity and Magnetism, D C Tayal, 1988, Himalaya Publishing House. rsity Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole. riffiths, Introduction to Electrodynamics, 3rd Edn, 1998, Benjamin Cumming			

Note: Students may not be familiar with vector calculus. Hence all examples involve differentiation either in one dimension or with respect to the radial coordinate

Electromagnetic Theory Laboratory [GE]

	Electroniag		<u> </u>	1	, i i i i i i i i i i i i i i i i i i i			
Scheme	Name of the subject:	\mathbf{L}	Т	Р	С	Semester:	Contact	
Version:						II	Hours	
	Electromagnetic						per	
	Theory Laboratory						Week:	
2022.20	[GE]						4	
2023-28		0	0	4	2		Total	
		-	_				Hours:	
							60	
Subject	Applicable to	Evaluatio		15	Exam	ination Dura		
Code:	Program:	n	CIE	Marks		s (Practical)		
SBS	Integrated B.Sc.	(Total	0111	35	1	quisite of Co	irse•	
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	None	quisite of Cot		
202 GE	Wilder (I Hysics)	50)		WILLING	Tione			
0042		20)						
#		List of H	Experim	ents			Hours	
	1. To use a Multimet				ces. (b)	AC and DC		
	Voltages, (c) DC		-					
	•			-				
	Measurement of cha	U		2	vleasure	ement of CDR		
	2. Determine a high re	sistance by I	Leakage	Method				
	3. To determine Self Inductance of a Coil by Rayleigh's Method.							
	4. To compare capacitances using De'Sauty's bridge.							
	5. Measurement of field strength B and its variation in a Solenoid							
	(Determine dB/dx).	e						
	6. To study the Charac	teristics of a	Series F	RC Circuit				
1	7. To study a series LC					(a) Resonant	60	
1	frequency, (b) Qual						00	
	8. To study a parallel LCR circuit and determine its (a) Anti-resonant							
	frequency and (b) Quality factor Q							
	9. To determine a Low Resistance by Carey Foster's Bridge.							
	10. To verify the Thevenin and Norton theorems							
	11. To verify Superposition, and Maximum Power Transfer Theorems.							
	12. To determine wavelength of sodium light using Newton's Rings.							
	13. To determine wavel	-	-	• •		• •		
	14. To determine wavel	ength of lase	er light u	sing Mich	elson In	terferometer.		
	15. To verify Malus Law.							
		TEXT	BOOK	S			!	
• Are	ora, C.L. 2015. B.Sc. Pra				Delhi: S	. Chand & Co).	
• Panigrahi, S. and Mallick, B. 2015. Engineering Practical Physics. I Edition. New Delhi:								
Cengage Learning India.								
 Prakash, I. and Ramakrishna. 2011. A Text Book of Practical Physics. I Edition. New 								
Delhi: Kitab Mahal.								
De	Denni. Kitao Manai.							

Waves and Optics [GE]

Scheme	Name of the subject:	L	Т	Р	C	Semester:	Contact			
Version:	Waves and Optics									
	[GE] per									
2023-28	Week:									
	3 1 0 4 $3+1$ Total									
	Hours									
					_		45+15			
Subject	Applicable to	Evaluatio	~~~~	30		ination Dura	tion:			
Code:	Program:	n	CIE	Marks		rs (Theory)				
SBS	Integrated B.Sc.	(Total		70		quisite of Co	urse:			
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	None					
301 GE		100)								
3104										
Course	This course is intended to introduce the student to a broad range of physical phenomena									
Descripti	involving waves (including mechanical waves, sound waves, and electromagnetic									
on	waves), coherence, interference and diffraction phenomena									
	• Learn the basics of wave motion.									
a .	 Learn the basics of wave motion. Know about the behavior of light due to its wave nature. 									
Course	 Know about the behavior of light due to its wave nature. Identify and understand different phenomena due to the interaction of light with 									
Objectiv	• Identify and understand different phenomena due to the interaction of light with light and matter.									
es	•	light and matter. Analyze some of the fundamental laws and principles of light which is used in								
	•	many important optical instruments.								
	After completion of this course, students would be able to:									
	After completion of this	s course, stuc	ients wo	ulu de able						
Course	• Enable the stude	ents to analyz	ze differe	ent phenor	nena du	e to the intera	ction of			
Outcome	• Enable the students to analyze different phenomena due to the interaction of light with light and matter.									
S	• Train the studen		erent op	tical instru	iments.					
	• Help the student		-			nena using dif	ferent			
	apparatus in the				1	0				
	TT T	COURSE	SYLLA	ABUS						
Unit No.		Content of	Each U	J nit			Hours of			
							Each Unit			

	Superposition of Two Collinear Harmonic oscillations: Linearity &	
	Superposition Principle. (1) Oscillations having equal frequencies and (2)	
	Oscillations having different frequencies (Beats).	
1	Superposition of Two Perpendicular Harmonic Oscillations:	
	Graphical and Analytical Methods. Lissajous Figures with equal an	15
	unequal frequency and their uses.	
	Waves Motion- General: Transverse waves on a string. Travelling and	
	standing waves on a string. Normal Modes of a string. Group velocity,	
	Phase velocity. Plane waves. Spherical waves, Wave intensity.	
	Fluids: Surface Tension: Synclastic and anticlastic surface - Excess of	
	pressure - Application to spherical and cylindrical drops and bubbles -	
	variation of surface tension with temperature - Jaegar's method. Viscosity	
	- Rate flow of liquid in a capillary tube - Poiseuille's formula -	
	Determination of coefficient of viscosity of a liquid - Variations of	
2	viscosity of liquid with temperature- lubrication.	15
2	Sound: Simple harmonic motion - forced vibrations and resonance -	10
	Fourier's Theorem - Application to saw tooth wave and square wave -	
	Intensity and loudness of sound - Decibels - Intensity levels - musical	
	notes - musical scale. Acoustics of buildings: Reverberation and time of	
	reverberation - Absorption coefficient - Sabine's formula - measurement	
	of reverberation time - Acoustic aspects of halls and auditoria.	
	Wave Optics: Electromagnetic nature of light. Definition and Properties	
	of wave front. Huygens Principle.	
	Interference: Interference: Division of amplitude and division of	
	wavefront. Young's Double Slit experiment. Lloyd's Mirror and	
	Fresnel's Biprism. Phase change on reflection: Stokes' treatment.	
3	Interference in Thin Films: parallel and wedge-shaped films. Fringes of	15
	equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau	
	Fringes). Newton's Rings: measurement of wavelength and refractive	
	index.	
	Michelson's Interferometer: Idea of form of fringes (no theory needed),	
	Determination of wavelength, Wavelength difference, Refractive index,	
	and Visibility of fringes.	
	Diffraction: Fraunhofer diffraction- Single slit; Double Slit. Multiple	
	slits and Diffraction grating. Fresnel Diffraction: Half-period zones. Zone	
4	plate. Fresnel Diffraction pattern of a straight edge, a slit and a wire using	15
	half-period zone analysis.	
	Polarization: Transverse nature of light waves. Plane polarized light –	
	production and analysis. Circular and elliptical polarization.(5 Lectures)	

TEXT BOOKS

- Fundamentals of Optics, F.A Jenkins and H.E White, 1976, McGraw-Hill
- Principles of Optics, B.K. Mathur, 1995, Gopal Printing
- Fundamentals of Optics, H.R. Gulati and D.R. Khanna, 1991, R. Chand Publications
- University Physics. F.W. Sears, M.W. Zemansky and H.D. Young. 13/e, 1986. Addison-Wesley

Waves and Optics Laboratory [GE]

Scheme Version: 2023-28	Name of the subject: Waves and Optics Laboratory [GE]	L	Τ	Р	C	Semester: III	Contact Hours per Week: 4		
		0 Evaluatio	0	4	2		Total Hours: 60		
Subject	Applicable to	ination Dura	ation:						
Code: SBS	Program: Integrated B.Sc.	s (Practical)	urse.						
PHY 03	Integrated B.Sc.(Total35Prerequisite of Course:M.Sc. (Physics)Marks:TEEMarksNone								
302 GE	50)								
0042									
#	List of Experiments Hou								
1	 To investigate the motion of coupled oscillators To determine the Frequency of an Electrically Maintained Tuning Fork by Melde's Experiment and to verify λ2 – T Law. To study Lissajous Figures Familiarization with Schuster's focussing; determination of angle of prism. To determine the Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method). To determine the Refractive Index of the Material of a Prism using Sodium Light. To determine Dispersive Power of the Material of a Prism using Mercury Light 						60		

8. To determine the value of Cauchy Constants.							
9. To determine the Resolving Power of a Prism.							
10. To determine wavelength of sodium light using Fresnel Biprism.							
11. To determine wavelength of sodium light using Newton's Rings.							
12. To determine the wavelength of Laser light using Diffraction of							
Single Slit.							
13. To determine wavelength of (1) Sodium and (2) Spectral lines of							
the Mercury light using plane diffraction Grating							
14. To determine the Resolving Power of a Plane Diffraction							
Grating.							
15. To measure the intensity using photosensor and laser in							
diffraction patterns of single and double slits.							
TEXT BOOKS							
• Arora, C.L. 2015. B.Sc. Practical Physics. II Edition. New Delhi: S. Chand & Co.							

- Panigrahi, S. and Mallick, B. 2015. Engineering Practical Physics. I Edition. New Delhi: Cengage Learning India.
- Prakash, I. and Ramakrishna. 2011. A Text Book of Practical Physics. I Edition. New Delhi: Kitab Mahal.

	If	ermal H	<u>'nysic</u>	<u> S [GE</u>					
Scheme Version: 2023-28 Subject Code: SBS PHY 03	Applicable to Program: Integrated B.Sc. M.Sc. (Physics)	Iermal F L 3 Evaluatio n (Total Marks:	'nysic T 1 CIE TEE	P 0 30 Marks 70 Marks	C 4 Exam 3 hour Prere	Semester: III ination Dura rs (Theory) quisite of Co School Mathe	urse:		
303 GE 3104		100)			-	mental Physic			
Course Descripti on	This course is designed of physical systems thermodynamics learnt further.	in equilibr	rium. T	The cours	e eval	uates the c	oncepts of		
Course Objectiv es	 To understand the fundamental laws of thermodynamics and their applications to various systems and processes To understand the concepts of entropy, thermodynamic potentials and Maxwell's thermodynamic relations To give exposure about the kinetic theory of gases, transport phenomena involved in ideal gases, phase transitions and behavior of real gases To able the students for solve the problems related to thermodynamics 								
Course Outcome s	 At the end of this course Grasp the basic of Understand the of thermodynamic interpretations. Learn the basic a distribution law, viscosity, therma Understand the of 	e, the student concepts and concepts of e potentials an aspects of kin equipartition al conductivi concept and	ts will be fundamentropy, and Maxwenetic the netic the n theorementy, diffu	e able to lental laws reversible vell's relati ory of gase m, mean fr sion and E ur of ideal	of ther and irre ons and es, Max ee path frownia	modynamics. eversible proce l their physica well-Boltzma of molecular n motion.	esses, ll		
	COURSE SYLLABUS								
Unit No.		Content of	Each U	J nit			Hours of Each Unit		
1	Laws of Thermodyna Zeroth Law of thermod energy, conversion of Processes, Applications	ynamics and heat into	l temper work,	ature. Firs Various	t law a Thermo	nd internal dynamical	14		

Thermal Physics [GE]

	CV, Work Done during Isothermal and Adiabatic Processes, Compressibility and Expansion Coefficient.						
2	 Reversible and irreversible processes, Second law and Entropy, Carnot's cycle & theorem, Entropy changes in reversible & irreversible processes, Entropy-temperature diagrams, Third law of thermodynamics, Unattainability of absolute zero. Thermodynamical Potentials: Enthalpy, Gibbs, Helmholtz and Internal Energy functions, Maxwell's relations and applications - Joule-Thompson Effect, Clausius-Clapeyron Equation, Expression for (CP – CV), CP/CV, TdS equations. 	16					
3	Kinetic Theory of Gases: Derivation of Maxwell's law of distribution of velocities and its experimental verification, Mean free path (Zeroth Order), Transport Phenomena: Viscosity, Conduction and Diffusion (for vertical case), Law of equipartition of energy (no derivation) and its applications to specific heat of gases; mono-atomic and diatomic gases.	14					
4	 Theory of Radiation: Blackbody radiation, Spectral distribution, Concept of Energy Density, Derivation of Planck's law, Deduction of Wien's distribution law, Rayleigh-Jeans Law, Stefan Boltzmann Law and Wien's displacement law from Planck's law. Statistical Mechanics: Phase space, Macrostate and Microstate, Entropy and Thermodynamic probability, Maxwell-Boltzmann law - distribution of velocity - Quantum statistics - Fermi-Dirac distribution law - electron gas - Bose-Einstein distribution law - photon gas - comparison of three statistics. 	16					
	TEXT BOOKS						
	mentals of Optics, F.A Jenkins and H.E White, 1976, McGraw-Hill bles of Optics, B.K. Mathur, 1995, Gopal Printing						
-	mentals of Optics, H.R. Gulati and D.R. Khanna, 1991, R. Chand Publicatio	ns					
	 Fundamentals of Optics, H.R. Gulati and D.R. Khanna, 1991, R. Chand Publications University Physics. F.W. Sears, M.W. Zemansky and H.D. Young. 13/e, 1986. Addison-Wesley 						

Thermal Physics Laboratory [GE]

Scheme Version:	Name of the subject: Thermal Physics [GE]	L	Τ	Р	C	Semester: III	Contact Hours per Week: 4
2023-28		0	0	4	2	-	Total Hours: 60
Subject	Applicable to	Evaluatio		15	Exam	ination Dur	ation:
Code:	Program:	n	CIE	Marks	3 hour	rs (Practical)	
SBS	Integrated B.Sc.	(Total		35	Prere	quisite of Co	ourse:
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	None		
304 GE		50)					
0042							
#		List of Ex	.				Hours
1	List of ExperimentsHours1. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method.2. Measurement of Planck's constant using black body radiation.3. To determine Stefan's Constant.4. To determine the coefficient of thermal conductivity of Cu by Searle's Apparatus.5. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method.6. To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method.607. To determine the temperature co-efficient of thermal end constructions of a thermocouple with temperature.609. To record and analyze the cooling temperature of an hot object as a function of time using a thermocouple and suitable data acquisition system6010. To calibrate Resistance Temperature Device (RTD) using Null Method/Off-Balance Bridge60						
A I PulPra	ora, C.L. 2015. B.Sc. Prad Laboratory Manual of Phy olication. kash, I. and Ramakrishna lhi: Kitab Mahal.	ctical Physics ysics for Und	lergradu	ion. New ate Classe	s, D.P. I	Khandelwal,	1985, Vani

Modern Physics [GE]

Scheme Version: 2023-28	Name of the subject: Modern Physics [GE]	L	Т	Р	C	Semester: IV	Contact Hours per Week: 3+1	
		3	1	0	4		Total Hours: 45+15	
Subject Code: SBS	Applicable to Program: Integrated BSc-MSc	Evaluatio n (Total	CIE	30 Marks	3 hour	ination Dura rs (Theory)		
PHY 03 401 GE 3104	Physics	Marks: 100)	TEE	70 Marks	None	quisite of Co		
Course Descripti on	This course aims at prove equation and its application structure, nuclear forces	tions, basic c	oncepts	of nuclear	physics			
Course Objectiv es	 To comprehend the failure of classical physics and need for quantum physics. To grasp the basic foundation of various experiments establishing the quantum physics by doing the experiments in the laboratory and interpreting them. To formulate the basic theoretical problems in physics and solve them. 							
Course Outcome s	 To formulate the basic theoretical problems in physics and solve them. After completion of this course, students would be able to: know the main aspects of the inadequacies of classical mechanics and understand the historical development of quantum mechanics and the ability to discuss and interpret experiments that reveal the dual nature of matter. Understand the theory of quantum measurements, wave packets, and the uncertainty principle. Understand the central concepts of quantum mechanics: wave functions, momentum, and energy operator, the Schrodinger equation, time-dependent and time-independent cases, probability density and the normalization techniques, skill development on problem-solving e.g. one-dimensional rigid box, tunneling through a potential barrier, step potential, rectangular barrier. Understanding the properties of nuclei like density, size, binding energy, nuclear forces, and structure of the atomic nucleus, liquid drop model and mass formula. 							
		COURSE						
Unit No.		Content of	Each U	J nit			Hours of Each Unit	

2Quantum internances: wave function and its physical significance, normalization, wave function for a free particle, time-dependent and time-independent Schrödinger wave equation for a non-relativistic particle, Operators: energy and momentum operators, hamiltonian operator, eigen values and eigen functions, observables and their significance, expectation value and degeneracy.182Applications of Schrödinger equation: Particle in a one-dimensional potential well: energy eigenvalues and eigenfunctions, normalization; Quantum mechanical scattering and tunnelling in one dimension - across a step potential and across a rectangular potential barrier (Tunnel effect); Harmonic Oscillator.183Nuclear Structure: Nuclear composition: isotopes, isobars, and isotones; nuclear mass, nuclear radius, nuclear density; nuclear stability: NZ graph, nuclar decays; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle; Binding energy, binding energy per nucleon, nature of nuclear forces, liquid drop model and semiempirical mass formula.123Radioactivity: Nuclear stability and radioactive decays: alpha-decay, beta-decay, gamma-decay, electron capture and positron emission; Laws12	1	Origin of Quantum Theory: Experimental background, the inadequacy of classical physics, blackbody radiation and ultraviolet catastrophe, Rayleigh-Jeans formula and Planck's quantum theory; photoelectric effect: experimental study and Einstein's theory, laws of photoelectric emission; Compton scattering: classical theory and quantum explanation, Compton shift, the direction and the kinetic energy of recoil electron, experimental setup, observations and explanation; Wave-particle duality. Matter waves and Uncertainty Principle: Wave properties of particles, de-Broglie hypothesis, velocity of matter waves (phase velocity), wave packet, phase velocity and group velocity, Experimental study of matter waves: Davisson-Germer experiment; Heisenberg's uncertainty principle, energy-time uncertainty principle, Illustration of uncertainty principle using a gamma-ray microscope and electron beam diffraction by a slit, Applications of uncertainty principle: non-existence of electrons inside the nucleus, zero point (minimum) energy of a particle, binding energy of an electron in a hydrogen atom.	18
 isotones; nuclear mass, nuclear radius, nuclear density; nuclear stability: NZ graph, nuclar decays; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle; Binding energy, binding energy per nucleon, nature of nuclear forces, liquid drop model and semi-empirical mass formula. Radioactivity: Nuclear stability and radioactive decays: alpha-decay, 	2	time-independent Schrödinger wave equation for a non-relativistic particle, Operators: energy and momentum operators, hamiltonian operator, eigen values and eigen functions, observables and their significance, expectation value and degeneracy. Applications of Schrödinger equation: Particle in a one-dimensional potential well: energy eigenvalues and eigenfunctions, normalization; Quantum mechanical scattering and tunnelling in one dimension - across a step potential and across a rectangular potential barrier (Tunnel effect);	18
	3	Nuclear Structure: Nuclear composition: isotopes, isobars, and isotones; nuclear mass, nuclear radius, nuclear density; nuclear stability: NZ graph, nuclar decays; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle; Binding energy, binding energy per nucleon, nature of nuclear forces, liquid drop model and semi-empirical mass formula.	12
 of radioactive decay; Mean life and half-life, activity, decay constant, equation of radioactive decay, radioactive series, Pauli's neutrino theory, energy spectrum of alpha-decay and beta-decay. Nuclear Reactions: Nuclear fission, nuclear fusion, Nuclear reactor: slow neutrons interacting with Uranium 235; Nuclear Fusion in stars and thermonuclear reactions. 	4	 beta-decay, gamma-decay, electron capture and positron emission; Laws of radioactive decay; Mean life and half-life, activity, decay constant, equation of radioactive decay, radioactive series, Pauli's neutrino theory, energy spectrum of alpha-decay and beta-decay. Nuclear Reactions: Nuclear fission, nuclear fusion, Nuclear reactor: slow neutrons interacting with Uranium 235; Nuclear Fusion in stars and thermonuclear reactions. 	12
 TEXT BOOKS Concepts of Modern Physics, Arthur Beiser, 2009, McGraw-Hill Modern Physics, J.R. Taylor, C.D. Zafiratos, M.A. Dubson,2009, PHI Learning 			

- Six Ideas that Shaped Physics: Particle Behave like Waves, Thomas A. Moore, 2003, McGraw Hill
- Quantum Physics, Berkeley Physics, Vol.4. E.H. Wichman, 2008, Tata McGraw-Hill Co.
- Modern Physics, R.A. Serway, C.J. Moses, and C.A.Moyer, 2005, Cengage Learning
- Modern Physics, G. Kaur and G.R. Pickrell, 2014, McGraw Hill
- Modern Physics, R. Murugeshan, 2016, S. Chand Publishing
- Physics for Engineers, NK Verma, 2014, PHI Learning

Modern Physics Laboratory [GE]

Scheme	Name of the subject:	Semester:	Contact							
Version:	Madam Dhara's a	IV	Hours							
	Modern Physics per									
	Laboratory [GE]									
2023-28			4							
		0	0	4	2	Total				
							Hours:			
							60			
Subject	Applicable to	Evaluatio		15		ination Dura	tion:			
Code:	Program:	n	CIE	Marks		rs (Practical)				
SBS	Integrated B.Sc.	(Total Marks:	TEE	35 Marks	Prere None	quisite of Co	urse:			
PHY 03	M.Sc. (Physics)									
402 GE										
0042										
#			Hours							
	1. Measurement of Pla	ation and								
	photo-detector									
1	2. Photo-electric effect:	photo curren	t versus	intensity a	and wave	elength of	60			
1	light; maximum		6				00			
	energy of photo-elec		-	• •	6 11					
	3. To determine work f	unction of ma	aterial of	t filament	of direc	tly heated				
	vacuum diode.	nalr'a consta	at using	I EDa of a	+ loost	different				
	4. To determine the Pla colours.	nek s consta	in using		ii least 4	unnerent				
	5. To determine the wa	walangth of	U alpha	omission	ling of	Uudrogon				
	atom.	weiengui OI	ri-aipiia	0111551011		riyurugen				
	6. To determine the ion	ization noten	tial of m	ercury						
	7. To determine the abs	-		•	nectrum	of Iodine				
	vapour.	orption miles	in the ft	national s	peenum					
	8. To determine the va	lue of e/m b	v (a) M	agnetic fo	cusing a	or (b) Bar				
Page			y (u) 111	ugnetie 10	cusing (

	magnet.								
	9. To setup the Millikan oil drop apparatus and determine the charge of								
	an electron.								
	10. To show the tunneling effect in tunnel diode using I-V characteristics.								
	11. To determine the wavelength of laser source using diffraction of single slit.								
	12. To determine the wavelength of laser source using diffraction of								
	double slits.								
	13. To determine (1) wavelength and (2) angular spread of He-Ne								
	laser using plane diffraction grating								
	TEXT BOOKS								
• Arora, C.L. 2015. B.Sc. Practical Physics. II Edition. New Delhi: S. Chand & Co.									
• Panigrahi, S. and Mallick, B. 2015. Engineering Practical Physics. I Edition. New Delhi:									
Cengage Learning India.									
• Prak	• Prakash, I. and Ramakrishna. 2011. A Text Book of Practical Physics. I Edition. New								
Delh	Delhi: Kitab Mahal.								

Ability Enhancement Compulsory Courses (AECC)

English Communication

Scheme Version: 2023-28	Name of the subject: English Communication	Semester: I/II	Contact Hours per Week: 3+1					
	Communication	3	1	0	4		Total Hours: 45+15	
Subject	Applicable to	Evaluati		30	Exam	ination Dur	ration:	
Code:	Program:	on	CIE	Marks	3 hour	S		
SBS	Integrated B.Sc.	(Total		70	Prere	quisite of C	ourse:	
ENG	M.Sc. (Physics)	Marks:	TEE	Marks	None			
0207		100)						
AECC								
3104								
Unit No.			Hours of Each Unit					
1	Communication Language of Commun Verbal and Non-verbal (Spoken and Written)	Language of Communication: Verbal and Non-verbal (Spoken and Written) Personal, Social and Business Barriers and Strategies						
2	Speaking Skills:MonologueDialogueGroup DiscussionEffective CommunicatiInterviewPublic Speech				<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		15	

3	Reading and Understanding Close Reading Comprehension Summary Paraphrasing Analysis and Interpretation Translation(from Indian language to English and vice-versa) Literary/Knowledge Texts	15				
4	Writing Skills Documenting Report Writing Making notes Letter writing	15				
	TEXT BOOKS					
•	in English - Part II, Oxford University Press, 2006.					
2. Business English, Pearson, 2008.						
3. Language, Literature and Creativity, Orient Blackswan, 2013.						
4. <i>Langua</i> Biswas	4. <i>Language through Literature</i> (forthcoming) ed. Dr. Gauri Mishra, Dr. Ranjana Kaul, Dr Brati Biswas					

Environmental Sciences

Scheme Version: 2023-28	Name of the subject: Environmental	L	Τ	Р	C	Semester: I/II	Contact Hours per Week:
	Sciences	4	0	0	4		3+1 Total Hours:
							45+15
Subject	Applicable to	Evaluati		30	Exam	ination Du	ration:
Code:	Program:	on	CIE	Marks	3 hour	ſS	
SBS	Integrated B.Sc.	(Total		70	Prere	quisite of C	ourse:
EVS	M.Sc. (Physics)	Marks:	TEE	Marks	None	-	
0107		100)					
AECC							
3104							
		COURSE	SYLLA	ABUS			
Unit No.	Content of Each Unit						Hours of Each Unit
	Introduction to Env	vironmental	Scienc	es: Defir	nition s	scope and	
1	importance of the Renewable and non- associated problems.	environmen	tal scie	ence, Na	tural F	Resources:	15
	Ecosystem: Introducti	on, kinds of	ecosyste	em, struct	ure and	functions,	
2	abiotic and biotic component, Ecological energetics, Energy flow models, Food chain and Food web, Ecological Pyramids-types, Ecological succession, Introduction, types, structure and function of the following ecosystem :- a. Forest ecosystem b. Grassland ecosystem c. Desert ecosystem d. Aquatic ecosystems						15
		-	•		Definit	ion, value	
3	Biodiversity and its conservation : Introduction – Definition, value and types: genetic, species and ecosystem diversity. Bio- geographical classification and Hot-spots of India. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts. Endangered and endemic species of India. Conservation of biodiversity: In-situ and Ex- situ conservation.						15

4	Environmental issues and policies: Definition, cause, effects and	15
	control measures of Air, Water, Soil, Marine and Noise pollution.	
	Solid Waste Management: Causes, effects and control measures of	
	wastes. Seventeen Sustainable Developmental Goals, Environment	
	Protection Act, Air Act, Water Act, Wildlife Protection Act, Forest	
	Conservation Act, Public awareness.	
	TEXT BOOKS	
	Bharucha E, (2002) The Biodiversity of India, Mapin Publishing	
2.	Cao G, Orru R (2014) Current Environmental Issues and Challenges. 20	14th edition;
	Springer	
3.	Cunningham W P, Cunningham M A (2008) Principles of Environment Scie	ence. Enquiry
	and Applications. 5 th Edition. Tata McGraw Hill, New Delhi	
4.	Dash M C, Dash S P (2009) Fundamentals of Ecology. 3rd McGraw Hill Ed	ucation
5.	Gibbs J, Malcolm L, Sterling J (2008) Problem-Solving in Conservation	Biology and
	Wildlife Management. 2 nd ed. Wiley-Blackwell	
6.	Ginley D, Cahen, D (2011) Fundamentals of Materials for Energy and Envi	ronmental
	Sustainability. Cambridge University Press	
7.	Gilbert M (2007) An Introduction to Environmental Engineering and Scien	ce, Prentice
	Hall, New Delhi	
8.	Khan I (2019) Forest Governance and Sustainable Resource Managem	ent. SAGE
	Publications. India.	
9.	Odum E P, Barrett W, (2005) Fundamentals of Ecology. 5th ed. Cengage Le	earning.
	Sharma P D (2017) Ecology and Environment. 13th ed. Rastogi Publication	-
11.	Thangadurai D, Ching G, Jeyabalan S, Islam S (2019) Biodiversity and	Conservation:
	Characterization and Utilization of Plants, Microbes and Natural R	desources for
	Sustainable Development and Ecosystem Management. United States: Ap	ple Academic
	Press	L
12.	Trivedi R K (2010) Handbook of Environmental Laws, Rules Guidelines,	Compliances
	and Standards, 3 rd Edition. BS Publications	Ŧ

प्राचीनभारतीयसंस्कृतिः, दर्शनं भाषाविज्ञानं च (1) Prācīnabhāratīyasamskṛtiḥ, Darśanam Bhāṣāvijñānam Ca (1)

माध्यमः – संस्कृत/हिन्दी/आंग्लभाषा Medium – Sanskrit/Hindi/English

Scheme Version:	Name of the subject:	L	Т	Р	С	Semester I/II	: Contact Hours per
version.	प्राचीनभारतीयसंस्कृतिः, दर्शनं					1/11	Week: 3+1
2023-28	भाषाविज्ञानं च (1)	3	1	0	4		Total Hours:
	Prācīnabhāratīyasaṁskṛtiḥ, Darśanaṁ Bhāṣāvijñānaṁ Ca (1)						45+15
Subject	Applicable to Program:	Evaluation		30			Duration:
Code: SBS	Integrated B.Sc. M.Sc.	(Total	CIE	Marks	3 h	ours	
SKT 0209	(Physics)	Marks:		70	Pro	erequisite	of Course:
AECC 3104		100)	TEE	Marks	No		
Course Obejctive	 संस्कृतेतर-विषयाणामध्येतृभ्यः स् वेदादि-शास्त्राणामुपनिषदां च रुचिर कर्मयोगस्य च तत्त्व-संधारणाय यत्नः; 	ज्त्पादनम्; 3. सं 4. सामान्य-भाषा	स्कृतेनोप विज्ञानस्य	गनिबद्धानां 1 परिचयः	[·] नीर्ा ।	तेवाक्यानां	गीतायां वर्णितस्य
Course Outcomes	 अध्येतारः वेदादि-शास्त्राणामुपनिषदां च तत्त्वान् ज्ञात्वा स्वाध्याय प्रयत्नशीलाः भवेयुः। व्यावहारिकदृष्ट्या संस्कृतज्ञानेन अन्यविषयाणामध्येतारः तत्तद् स्वविषयानुगुणं संस्कृतभाषायामुपः लभ्यमानानां ग्रन्थानां प्रति यत्नशीलाः स्युः। 						រुः। कृतभाषायामुप-
	 वेदोपनिषत्–गीता–नीतिशास्त् परिचयः संजायेत। 	म-भाषाशाँस्तादीग					र्वजानां वैदुष्येण
	 भारतीय-चिन्तनपरम्परायाः स् 	<u> </u>		।: प्रकृष्टमा	ध्यम	ः सजायत।	
	COU	RSE SYLLAF	BUS				
Unit No.	Conten	t of Each Uni	t			H	lours of Each Unit
1	मन्त्राणां सन्दर्भानां श्लोकानां च व्याख्या सारसंक्षेपश्च – (क) यजुर्वेदः (34. 1-6)-शिवसंकल्पमन्त्राः; (ख) तैत्तिरीयोपनिषद् - शिक्षावल्ली ¹⁵ (अनुशासनोपनिषद्)						15
2	मन्त्राणां सन्दर्भानां श्लोकानां च व्याख्या सारसंक्षेपश्च – भर्तृहरिः- नीतिशतकम् : 1-50 श्लोकाः						15
3	मन्त्राणां सन्दर्भानां श्लोकानां च व्याख्या सारसंक्षेपश्च – भगवद्गीता – तृतीयाध्यायः (कर्मयोगः)						15
4	मन्त्राणां सन्दर्भानां श्लोकानां च व्याख	या सारसंक्षेपश्च –					15

	वेज्ञानम्- (क) वर्णमाला, वर्णानाम् उच्चारणस्थानानि प्रयत्नाश्च; (ख)
-	। सामान्य परिचयः, भाषापरिवर्तनस्य कारणानि, अर्थपरिवर्तनस्य
कारणानि च	
	TEXT BOOKS /अनुशंसितग्रन्थाः
1. उवव्ट-महीधर, शुक्लयजुर्वेव	भाष्य, मोतीलाल बनारसीदास, दिल्ली, 2007
2. स्वामी दयानन्द सरस्वती, य	जुर्वेदभाष्य, सम्पा० ब्रह्मदत्त जिज्ञासु, रामलाल कपूर ट्स्ट, सोनीपत (हरियाणा)
3. तैत्तिरीयोपनिषद, हिन्दी व्या	ब्याकार - स्वामी प्रखर प्रज्ञानन्द सरस्वती, काशी, 2013
	क एवं हिन्दी व्याख्याकार - जनार्दन शास्त्री पाण्डेय, मोतीलाल बनारसीदास, दिल्ली, 2014
	दी व्याख्याकार - राजेश्वर शास्त्री मुसलगाँवकर, चौखम्भा, वाराणसी
6. श्रीमद्भगवद्गीता (हिन्दी अनुव	ाद सहित), गीता प्रैस, गोरखपुर, 2015
	रीता (द्वितीय, तृतीय एवं चतुर्थ अध्याय), 2005
8. देवींदत्त शर्मा, भाषिकी और	संस्कृत भाषा, हरियाणा साहित्य अकादमी, चण्डीगढ़, 1990
9. कपिलदेव द्विवेदी, भाषा-विइ	गन एवं भाषा-शास्त, विश्वविद्यालय प्रकाशन, चौक, वाराणसी, 2012
10. कर्णसिंह, भाषाविज्ञान, सार्गि	
11. Burrow, T., The Sanskri	t Language, 2016
12. Gune, P.D., An Introduc	tion to Comparative Philology, Oriental Book House, Poona, 1958
13. The Taittirīya Upaniṣad	Eng. Tr. and Commentary by Swami Muni Narayana Prasad, D.k. Print world (P),
Ltd., New Delhi-2009	
14. The Nīti and Vairāgya Ś	atakas of Bhartrihari, M.R. Kale, Motilal Banarsidass, Delhi, 2017

हिंदी भाषा: रचना एवं व्यवहार

Scheme Version:	Name of the subject: हिंदी भाषा: रचना एवं	L	T	Р	C	Semester I/II	Contact Hours per Week: 3+1
2023-28	ाहदा माषा: रचना एव व्यवहार	3	1	0	4		Total Hours: 45+15
Subject Code: SBS PHY 03 203 AE 3104	Applicable to Program: Integrated B.Sc. M.Sc. (Physics)	Evaluation (Total Marks: 100)	CIE TEE	30 Marks 70 Marks	3 h	amination ours erequisite one	
Course Obejctive Course Outcomes	 भाषा, व्याकरण एवं साहित्य के सामान्य स्वरूप का हिदर्शि । भाषा, बोली और व्याकरण के विविध घटकों का परिचय । संचार माध्यमों के स्वरूप और भाषा का ज्ञान । रचना पाठ से साहित्य बोध । 						
		COURSE SYLL	ABUS				
Unit No.		Content of Each	Unit			H	Iours of Each Unit
1	Unit – I भाषा और व्याकरण भाषा की परिभाषा एवं विशेषता भाषा और व्याकरण हिंदी की ध्वनियों का वर्गीकरण		Î)				15
2	Unit –II हिंदी की संवैधानिक हिंदी भाषा व बोलियों का संक्षिप्त हिंदी की संवैधानिक स्थिति : राज कार्यालयी हिंदी : पल्लवन, संक्षे पत्र लेखन : सरकारी, अर्द्ध-सरक	ग परिचय जभाषा, संपर्क भाषा औ पण, टिप्पण	र राष्ट्रभाष	ſ			15

	Unit –III संचार माध्यमों का स्वरूप एवं भाषा				
3	संचार माध्यमों का स्वरूप एवं भाषा संचार माध्यमों का सामाजिक प्रभाव कंप्यूटर में हिंदी का अनुप्रयोग	15			
	Unit -IV				
	कहानी : चंद्रधर शर्मा 'गुलेरी' : उसने कहा था; प्रेमचंद : नशा				
4		15			
	निबंध : हजारी प्रसाद द्विवेदी : नाखून क्यों बढ़ते हैं; बालमुकुंद गुप्त : बनाम लार्ड कर्जन				
	कविता : सूर्यकांत त्रिपाठी 'निराला' : वर दे, वीणा वादिनी वर दे ! जयशंकर प्रसाद : हिमाद्रि तुंग शृंग से				
	TEXT BOOKS /अनुशंसितग्रन्थाः				
1. हिंदी : उ	 हिंदी : उद्भव, विकास और रूप; डॉ हरदेव बाहरी; किताब महल इलाहाबाद; 1969. 				
 हिंदी भाषा; डॉ भोलानाथ तिवारी; किताब महल, इलाहाबाद; 2004. 					
 हिंदी व्याकरण; कामता प्रसाद गुप्त; नागरी प्रचारिणी सभा, काशी; 1927. 					
 व्यावहारिक हिंदी व्याकरण तथा रचना; हरदेव बाहरी; लोकभारती प्रकाशन, इलाहाबाद; 1972. 					
 कंप्यूटर और हिंदी; हरिमोहन; तक्षशिला प्रकाशन, दिल्ली; 2015. 					
6. रेडियो अं	ौर दूरदर्शन पत्रकारिता; हरिमोहन; तक्षशिला प्रकाशन, दिल्ली; 2017.				

Course Contents

(for Semester VII to X)

Core Courses

Classical Mechanics

Version: Classical Mechanics Image: Classical Mechanics VI Hours per Week: 3+1 2023-28 3 1 0 4 3+1 Total Hours: 45+15 Subject Code: Program: n 1 70 Prerequisite of Course: Basic Integrated B.Sc. Total Hours: 45+15 PHY 03 M.Sc. (Physics) Marks: TEE Marks abouts (Integrated B.Sc. 1000 1000 1000 Prerequisite of Course: Basic knowledge of mechanics to the students so that hey are able to understand the Lagrangian & Hamiltonian mechanics of systems of particles interacting with various forces and also their applications in various branche of Physics. Course Objectiv es • To understand the fundamentals of classical mechanics • To get familiar with various classical mechanics Objective science branches • To aware the students about applications of classical mechanics in various science branches • To aware the students about applications of classical mechanics in various science branches Outcome s • Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. • Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action. • Learn about Rigid body dynamics including problems. • Understand the two body central force problem and its related aspects. <	Scheme	Name of the subject:	L	Т	P	С	Semester:	Contact
2023-28 Image: second seco	Version:	Classical Mechanics					VII	Hours
2023-28 3 1 0 4 3+1 3 1 0 4 4 4 Subject Code: Applicable to Program: n CIE Marks 3 hours (Theory) SBS Integrated B.Sc. (Total M.Sc. (Physics) n CIE Marks 3 hours (Theory) 701 CC 3104 70 Prerequisite of Course: Basic Narks: Nowledge of mechanics and calculus 001 CC This course aims at providing knowledge of Classical Mechanics to the students so that they are able to understand the Lagrangian & Hamiltonian mechanics of systems of particles interacting with various forces and also their applications in various branche of Physics. Course • To understand the fundamentals of classical mechanics Objectiv es • To aware the students about applications of classical mechanics in various science branches After completion of this course, students would be able to: • Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. • Learn about Rigid body dynamics including problems. • • Understand the two body central force problem and its related aspects. Course • Understand the two body central force problem and its rela		Classical Mechanics						-
Subject Applicable to Evaluatio 3 1 0 4 Subject Applicable to Program: n CIE Marks 3 hours (Theory) SBS Integrated B.Sc. (Total 70 Prerequisite of Course: Basic PHY 03 M.Sc. (Physics) Marks: TEE Marks knowledge of mechanics and calculus 3104 This course aims at providing knowledge of Classical Mechanics to the students so that they are able to understand the Lagrangian & Hamiltonian mechanics of systems or particles interacting with various forces and also their applications in various branche of Physics. Course • To understand the fundamentals of classical mechanics • To get familiar with various classical mechanics Objectiv es • To get familiar with various classical mechanics • To aware the students about applications of classical mechanics in various science branches Outcome s • Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. • Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action. • Learn about Rigid body dynamics including problems. • Understand the two body central force problem and its related aspects. Course Outcome s • Understand the two body central force problem and its related aspects. <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
Subject Code: Applicable to Program: Evaluatio n 30 CIE Examination Duration: 300 SBS Integrated B.Sc. (Total PHY 03 M.Sc. (Physics) Marks: TEE Marks 3 hours (Theory) S00 Sc. (Physics) Marks: TEE Marks knowledge of Course: Basic knowledge of mechanics and calculus OUCC This course aims at providing knowledge of Classical Mechanics to the students so that they are able to understand the Lagrangian & Hamiltonian mechanics of systems of particles interacting with various forces and also their applications in various branche of Physics. Course Objectiv es • To understand the fundamentals of classical mechanics • To get familiar with various classical mechanics • To aware the students about applications of classical mechanics in various science branches After completion of this course, students would be able to: • Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. • Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action. • Learn about Rigid body dynamics including problems. • Understand the two body central force problem and its related aspects. • Understand the two body central force problem and its related aspects. • Understand the two body central force problem and its	2023-28							
Subject Applicable to Evaluatio 30 Examination Duration: Code: Program: n CIE Marks 3 hours (Theory) SBS Integrated B.Sc. (Total 70 Prerequisite of Course: Basic PHY 03 M.Sc. (Physics) Marks: TEE Marks knowledge of mechanics and calculus 3104 100) 100 Prerequisite of Course: Basic movelage of mechanics of systems on particles interacting with various forces and also their applications in various branche of Physics. Course • To understand the fundamentals of classical mechanics or particles interacting with various classical mechanics Objectiv • To get familiar with various classical mechanics or lagrangian & Hamiltonian formulations • To aware the students about applications of classical mechanics in various science branches of advare the students about applications of classical mechanics in various science branches Course • • • the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. • • • • • the mechanics of system of motion. • • • • • • <th></th> <th></th> <th>3</th> <th>1</th> <th>0</th> <th>4</th> <th></th> <th></th>			3	1	0	4		
Subject Code: SBSApplicable to Program: Integrated B.Sc. (PHY 03 701 CC 3104Evaluatio n (Total 100)30 CIE Marks TEE Marks TEE Marks Marks Marks TEE Marks Marks Marks TEE Marks Marks Marks Marks Marks Marks Marks Marks TEE Marks 								
Code: SBS PHY 03 701 CC 								
SBS Integrated B.Sc. (Total 70 Prerequisite of Course: Basic knowledge of Course: Basic knowledge of mechanics and calculus 701 CC 3104 100) 100) Integrated B.Sc. Knowledge of mechanics and calculus 01 CC 3104 100) 100) Integrated B.Sc. Knowledge of mechanics and calculus 01 CC 3104 This course aims at providing knowledge of Classical Mechanics to the students so that they are able to understand the Lagrangian & Hamiltonian mechanics of systems or particles interacting with various forces and also their applications in various branche of Physics. Course • To understand the fundamentals of classical mechanics 0bjectiv • To get familiar with various classical mechanics • To get familiar with various classical mechanics • To aware the students about applications of classical mechanics in various science branches • To aware the students about applications of classical mechanics in various science branches • Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. • Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. • Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action. • Learn about Rigid body dynamics including problems. • Understand the two body central force problem and its	•		Evaluatio					tion:
PHY 03 701 CC 3104 M.Sc. (Physics) Marks: 100) TEE Marks knowledge of mechanics and calculus Course Descripti on This course aims at providing knowledge of Classical Mechanics to the students so that they are able to understand the Lagrangian & Hamiltonian mechanics of systems of particles interacting with various forces and also their applications in various branche of Physics. Course Objectiv es To understand the fundamentals of classical mechanics Marks To get familiar with various classical mechanics in various science branches After completion of this course, students would be able to: After completion of this course, students would be able to: Outcome s Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action. Learn Canonical Transformations & Hamilton-Jacobi theory. Learn about Rigid body dynamics including problems. Understand the two body central force problem and its related aspects. COURSE SYLLABUS Courtent of Each Unit Hours of		U		CIE				
701 CC 3104 100) calculus Course Descripti on This course aims at providing knowledge of Classical Mechanics to the students so that they are able to understand the Lagrangian & Hamiltonian mechanics of systems of particles interacting with various forces and also their applications in various branche of Physics. Course Objectiv es • To understand the fundamentals of classical mechanics • To get familiar with various classical mechanics • To aware the students about applications of classical mechanics in various science branches After completion of this course, students would be able to: • Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. • Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action. • Learn Canonical Transformations & Hamilton-Jacobi theory. • Learn about Rigid body dynamics including problems. • Understand the two body central force problem and its related aspects. COURSE SYLLABUS Unit No. Content of Each Unit Hours of		-	-				-	
3104 This course aims at providing knowledge of Classical Mechanics to the students so that they are able to understand the Lagrangian & Hamiltonian mechanics of systems of particles interacting with various forces and also their applications in various branche of Physics. Course To understand the fundamentals of classical mechanics Objectiv To get familiar with various classical mechanical problems related to Lagrangian & Hamiltonian formulations es To aware the students about applications of classical mechanics in various science branches After completion of this course, students would be able to: Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. s Learn about Hamiltonian formulations & Hamilton-Jacobi theory. Learn about Rigid body dynamics including problems. Understand the two body central force problem and its related aspects. COURSE SYLLABUS Unit No. Content of Each Unit		M.Sc. (Physics)		TEE	Marks		-	anics and
Course Descripti on This course aims at providing knowledge of Classical Mechanics to the students so that they are able to understand the Lagrangian & Hamiltonian mechanics of systems of particles interacting with various forces and also their applications in various branche of Physics. Course Objectiv es To understand the fundamentals of classical mechanics Course Objectiv es To get familiar with various classical mechanical problems related to Lagrangian & Hamiltonian formulations To aware the students about applications of classical mechanics in various science branches After completion of this course, students would be able to: Course Outcome s Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action. Learn Canonical Transformations & Hamilton-Jacobi theory. Learn about Rigid body dynamics including problems. Understand the two body central force problem and its related aspects. COURSE SYLLABUS Course of Course System Course Course System Course C			100)			calculu	18	
Descripti onthey are able to understand the Lagrangian & Hamiltonian mechanics of systems of particles interacting with various forces and also their applications in various branche of Physics.Course Objectiv es• To understand the fundamentals of classical mechanics • To get familiar with various classical mechanical problems related to Lagrangian & Hamiltonian formulations • To aware the students about applications of classical mechanics in various science branchesCourse Outcome s• Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. • Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action. • Learn about Rigid body dynamics including problems. • Understand the two body central force problem and its related aspects.Course Outcome s• Course • Understand the two body central force problem and its related aspects.Curse Outcome s• Understand the two body central force problem and its related aspects.								
onparticles interacting with various forces and also their applications in various branche of Physics.Course Objectiv es• To understand the fundamentals of classical mechanics • To get familiar with various classical mechanical problems related to Lagrangian & Hamiltonian formulations • To aware the students about applications of classical mechanics in various science branchesCourse Outcome s• After completion of this course, students would be able to: • Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. • Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action. • Learn about Rigid body dynamics including problems. • Understand the two body central force problem and its related aspects.COURSE Unit No.Content of Each UnitHours of		-	-	-				
of Physics. Course Objectiv es To get familiar with various classical mechanical problems related to Lagrangian & Hamiltonian formulations • To aware the students about applications of classical mechanics in various science branches After completion of this course, students would be able to: • Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. • Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action. • Learn Canonical Transformations & Hamilton-Jacobi theory. • Understand the two body central force problem and its related aspects. COURSE SYLLABUS Unit No. Content of Each Unit	Descripti							-
Course Objectiv es• To understand the fundamentals of classical mechanics • To get familiar with various classical mechanical problems related to Lagrangian & Hamiltonian formulations • To aware the students about applications of classical mechanics in various science branchesCourse Outcome sAfter completion of this course, students would be able to: • Understand the mechanics, & Euler's equation of motion. • Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action. • Learn about Rigid body dynamics including problems. 	on		h various for	rces and	also their	applica	tions in vario	ous branches
Objectiv es • To get familiar with various classical mechanical problems related to Lagrangian & Hamiltonian formulations • To aware the students about applications of classical mechanics in various science branches After completion of this course, students would be able to: • Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. • Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action. • Learn Canonical Transformations & Hamilton-Jacobi theory. • Learn about Rigid body dynamics including problems. • Understand the two body central force problem and its related aspects. COURSE SYLLABUS Unit No. Content of Each Unit Hours of		of Physics.						
Objectives • To get familiar with various classical mechanical problems related to Lagrangian & Hamiltonian formulations es • To aware the students about applications of classical mechanics in various science branches After completion of this course, students would be able to: • Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. S • Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action. • Learn Canonical Transformations & Hamilton-Jacobi theory. • Learn about Rigid body dynamics including problems. • Understand the two body central force problem and its related aspects. • COURSE SYLLABUS Unit No. • Content of Each Unit • Hours of	Course	• To understar	nd the fundar	nentals of	of classica	l mecha	nics	
es Lagrangian & Hamiltonian formulations • To aware the students about applications of classical mechanics in various science branches After completion of this course, students would be able to: • Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. • Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action. • Learn Canonical Transformations & Hamilton-Jacobi theory. • Learn about Rigid body dynamics including problems. • Understand the two body central force problem and its related aspects. COURSE SYLLABUS Unit No. Content of Each Unit		• To get fam	iliar with v	arious c	classical r	nechani	cal problems	related to
 To aware the students about applications of classical mechanics in various science branches After completion of this course, students would be able to: Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action. Learn Canonical Transformations & Hamilton-Jacobi theory. Learn about Rigid body dynamics including problems. Understand the two body central force problem and its related aspects. COURSE SYLLABUS Unit No. 	Ŭ	•					1	
science branches After completion of this course, students would be able to: Course Outcome s • Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. • Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action. • Learn Canonical Transformations & Hamilton-Jacobi theory. • Learn about Rigid body dynamics including problems. • Understand the two body central force problem and its related aspects. COURSE SYLLABUS Unit No. Content of Each Unit						classic	al mechanics	in various
Course Outcome s• Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. • Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action. • Learn Canonical Transformations & Hamilton-Jacobi theory. • Learn about Rigid body dynamics including problems. • Understand the two body central force problem and its related aspects.COURSE SYLLABUSUnit No.Content of Each UnitHours of								
Course Outcome s• Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. • Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action. • Learn Canonical Transformations & Hamilton-Jacobi theory. • Learn about Rigid body dynamics including problems. • Understand the two body central force problem and its related aspects.COURSE SYLLABUSUnit No.Content of Each UnitHours of		After completion of this	s course, stud	lents wo	uld be able	e to:		
Outcome sLagrangian mechanics, & Euler's equation of motion.Image: SLearn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action.Image: Learn Canonical Transformations & Hamilton-Jacobi theory.Image: Learn about Rigid body dynamics including problems.Image: Understand the two body central force problem and its related aspects.COURSE SYLLABUSImage: Unit No.Image: Content of Each UnitImage: Hours of Hours			, course , stae					
s • Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action. • Learn Canonical Transformations & Hamilton-Jacobi theory. • Learn about Rigid body dynamics including problems. • Understand the two body central force problem and its related aspects. COURSE SYLLABUS Unit No. Content of Each Unit	Course			-	-		'Alembert's J	principle,
Principle of least action. • Learn Canonical Transformations & Hamilton-Jacobi theory. • Learn about Rigid body dynamics including problems. • Understand the two body central force problem and its related aspects. • COURSE SYLLABUS Unit No. Content of Each Unit	Outcome			-				
 Learn Canonical Transformations & Hamilton-Jacobi theory. Learn about Rigid body dynamics including problems. Understand the two body central force problem and its related aspects. COURSE SYLLABUS Unit No. Content of Each Unit Hours of	S			mulation	i, Hamilto	n's Equ	ations of Mot	ion and
 Learn about Rigid body dynamics including problems. Understand the two body central force problem and its related aspects. COURSE SYLLABUS Unit No. Content of Each Unit Hours of		1		0	TT	T 1 * .	1	
Understand the two body central force problem and its related aspects. COURSE SYLLABUS Unit No. Content of Each Unit Hours of							neory.	
COURSE SYLLABUS Unit No. Content of Each Unit Hours of		-					molotod	ta
Unit No.Content of Each UnitHours of		• Understand the	-		-	and its	retated aspec	ls.
	In:4 No						Γ	Hanne - f
Each Unit	UIIIt INO.	Content of Each Unit						
								Lach Unit

	Lagrangian Formulation and Hamilton's Principles:	
	Mechanics of one and many particle systems, Virtual work, Constraints of	
	motion, generalized coordinates, D'Alembert's Principle and Euler-Lagrange	
1		15
1	Equations of motion, velocity dependent potentials, dissipation function, simple	15
	applications of Lagrangian formulation.	
	Calculus of Variations, Hamilton's Principle, Derivation of Lagrange's	
	equation from Hamilton's principle, extension to nonholonomic systems,	
	advantages of variational principle formulation, Symmetry Properties of space and time, Conservation theorems	
	Hamilton's Equations of Motion and Small Oscillations:	
	Generalized momentum, Legendre transformation and the Hamilton's	
	Equations of Motion, simple applications of Hamiltonian formulation, cyclic	
2	coordinates, Routh's procedure, Hamiltonian Formulation of Relativistic	15
	Mechanics, Derivation of Hamilton's canonical equation from Hamilton's	
	variational principle. The principle of least action.	
	Stable and unstable equilibria; Theory of small oscillations in	
	Lagrangian formulation, normal coordinates and its applications, Free	
	vibrations of linear triatomic oscillator.	
	Canonical Transformation and Hamilton-Jacobi Theory:	
	Comparing transformation and its examples integral invariant of Dainson	
	Canonical transformation and its examples, integral invariant of Poincare, Lagrange's and Poisson brackets as canonical invariants, equation of motion in	
3	Poisson bracket formulation, Angular momentum, Infinitesimal contact	15
	transformation and generators of symmetry, Liouville's theorem. Hamilton-	
	Jacobi equation for Principal and characteristic function, Harmonic Oscillator	
	Problem, Action angle variable: adiabatic invariance of action variable.	
	Two-body Central Force problem and Rigid Body Motion:	
	True holds control forms muchlane. Deduction to consider that and he had	
	Two body central force problem: Reduction to equivalent one body problem, equation of motion and first integrals, Equivalent 1D problem, classification of	
	orbits, Differential equation for the orbit, Kepler's problem, Scattering cross	
4	section, Rutherford's Formula.	15
	Orthogonal transformation, Euler equations, Eulerian angles ad Euler's Theorem,	-
	Infinitesimal rotation, Rate of change of a vector, Coriolis force, Angular	
	Momentum and Kinetic energy of a rigid body, moment of Inertia, Eigenvalues	
	of the inertia tensor.	
	TEXT BOOKS	
L		

- Classical Mechanics, H.Goldstein, C.P. Poole, J.L. Safko, 3rd Edn. 2002, Pearson Education.
- Mechanics, L. D. Landau and E. M. Lifshitz, 1976, Pergamon.
- A.Sommerfeld, Mechanics, Academic Press, United States, 1st Edition, 1952.
- I. Percival and D. Richards, Introduction to Dynamics, Cambridge University Press, 1982.
- Ronald L. Greene, Classical Mechanics with Maple, Springer, Germany, 2nd Edition, 2000.
- N.C. Rana and P.S. Joag, Classical Mechanics, Tata McGraw Hill, New Delhi, 1st Edition, 2015.
- Solved Problems in classical Mechanics, O.L. Delange and J. Pierrus, 2010, Oxford Press
- Classical Mechanics: An introduction, Dieter Strauch, 2009, Springer.

Scheme	Name of the subject:	L	Т	Р	С	Semester:	Contact	
Version:	A					VII	Hours	
	Advanced						per	
	Mathematical Physics						Week:	
2023-28							3+1	
		3	1	0	4		Total	
							Hours:	
							45+15	
Subject	Applicable to	Evaluatio		30	Exam	ination Durat	tion:	
Code:	Program:	n	CIE	Marks	3 hours (Theory)			
SBS	Integrated B.Sc.	(Total		70	Prere	quisite of Cou	irse:	
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	Under	graduate level		
702 CC		100)			Mathe	matical Physic	cs	
3104								
Course	This course aims at pre-	oviding know	wledge I	Linear Veo	ctor Spa	aces, Matrices	, Cartesian	
Descripti	Tensors, General Tenso	ors and also the	heir appl	ications in	variou	s branches of l	Physics.	
on								
Course	• In this cours	se, the studer	nts shoul	ld the lear	n the sk	tills of doing of	calculations	
Objectiv	with the line	ear vector sp	bace, ma	trices, the	ices, their eigenvalues and eigenvectors,			
, , , , , , , , , , , , , , , , , , ,	tensors, real and complex fields, linear and multilinear transformations in							
es	various phys	various physical situations, e.g., the Lorentz transformations etc.						
	• They also to variation'.	become effic	cient in	doing cal	culatior	ns with the '	calculus of	

Advanced Mathematical Physics

	After completion of this course, students would be able to:			
Course Outcome s	• Learn the basic properties of matrices, different types of matrices viz., Hermitian,			
	COURSE SYLLABUS			
Unit No.	Content of Each Unit	Hours of Each Unit		
1	Linear Vector Spaces: Abstract Systems. Binary Operations and Relations. Introduction to Groups and Fields. Vector Spaces and Subspaces. Linear Independence and Dependence of Vectors. Basis and Dimensions of a Vector Space. Change of basis. Homomorphism and Isomorphism of Vector Spaces. Linear Transformations. Algebra of Linear Transformations. Non-singular Transformations. Representation of Linear Transformations by Matrices.	15		
2	Matrices: Addition and Multiplication of Matrices. Null Matrices. Diagonal, Scalar and Unit Matrices. Upper-Triangular and Lower- Triangular Matrices. Transpose of a Matrix. Symmetric and Skew- Symmetric Matrices. Conjugate of a Matrix. Hermitian and Skew- Hermitian Matrices. Singular and Non-Singular matrices. Orthogonal and Unitary Matrix. Trace of a Matrix. Inner Product. Eigen-values and Eigenvectors. Cayley- Hamilton Theorem. Diagonalization of Matrices. Solution of Coupled Linear Ordinary Differential Equations. Functions of a Matrix	15		

3	Cartesian Tensors: Transformation of Coordinates. Einstein's Summation Convention. Relation between Direction Cosines. Tensors. Algebra of Tensors. Sum, Difference and Product of Two Tensors. Contraction. Quotient Law of Tensors. Symmetric and Antisymmetric Tensors. Invariant Tensors: Kronecker and Alternating Tensors. Association of Antisymmetric Tensor of Order Two and Vectors. Vector Algebra and Calculus using Cartesian Tensors : Scalar and Vector Products, Scalar and Vector Triple Products. Differentiation. Gradient, Divergence and Curl of Tensor Fields. Vector Identities. Tensorial Formulation of Analytical Solid Geometry: Equation of a Line. Angle Between Lines. Projection of a Line on another Line. Condition for Two Lines to be Coplanar. Foot of the Perpendicular from a Point on a Line. Rotation Tensor (No Derivation). Isotropic Tensors. Tensorial Character of Physical Quantities. Moment of Inertia Tensor. Stress and Strain Tensors : Symmetric Nature. Elasticity Tensor. Generalized Hooke's Law.	15					
4	General Tensors: Transformation of Coordinates. Minkowski Space. Contravariant & Covariant Vectors. Contravariant, Covariant and Mixed Tensors. Kronecker Delta and Permutation Tensors. Algebra of Tensors. Sum, Difference & Product of Two Tensors. Contraction. Quotient Law of Tensors. Symmetric and Antisymmetric Tensors. Metric Tensor.	15					
	TEXT BOOKS						
	• Mathematical Tools for Physics, James Nearing, 2010, Dover Publications						
	• Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, and F.E. Harris, 1970, Elsevier.						
		1 Combridge					
	odern Mathematical Methods for Physicists and Engineers, C.D. Cantrell, 201 iversity Press	r, Camoriuge					
University Press							

- Introduction to Matrices and Linear Transformations, D.T. Finkbeiner, 1978, Dover Pub.
- Linear Algebra, W. Cheney, E.W.Cheney & D.R.Kincaid, 2012, Jones & Bartlett Learning
- Mathematics for Physicists, Susan M. Lea, 2004, Thomson Brooks/Cole

• Mathematical Methods for Physicists & Engineers, K.F.Riley, M.P.Hobson, S.J.Bence, 3rd Ed., 2006, Cambridge University Press

Advanced Quantum Mechanics

Scheme	Name of the subject:	L	Т	Р	C	Semester:	Contact		
Version:	Advanced Quantum					VII	Hours per		
	Mechanics						Week:		
2023-28							3+1		
2023-20		3	1	0	4		Total		
							Hours:		
C L				20	T		45+15		
Subject Code:	Applicable to Program:	Evaluatio	CIE	30 Marks		ination Dura s (Theory)	uon:		
SBS	Integrated B.Sc.	n (Total	CIE	70		quisite of Cou	1150.		
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks		graduate level			
703 CC		100)		101ur K5		matical Physi			
3104		,				um Physics			
Course	This course is designed								
Descripti	identical particles, appr				• •				
on	has broad and rich app	•				es, atomic and	d molecular		
	physics, nuclear physics, space science, and chemistry.								
	• To make fan	niliar with va	arious ad	dvanced to	pics of	quantum mec	hanics such		
	• To make familiar with various advanced topics of quantum mechanics such as symmetries and conservation laws, fermions and bosons, time independent								
Course	and time dependent perturbation theories, variational and WKB methods,								
Objectiv		eory, delta fu							
es	• To aware the	•							
						nysical, mathe	matical and		
	-	Advanced phenomena of quantum mechanics in physical, mathematical and chemical sciences							
	After completion of this course, students will be able to								
	• understand the c	oncepts of sy	ymmetri	es, conserv	vation la	aws, bosons an	nd fermions		
	in quantum mechanics								
	• apply symmetries and conservation laws in various quantum mechanical								
~	problems								
Course	• illustrate the tim	e independer	nt and ti	me depend	lent pert	urbation theory	ries, the		
Outcome	variational and WKB methods								
S	• describe the fine	e structure an	d Zeema	an effect p	henome	na			
	• explain the basics of scattering theory								
	• apply the delta f	unction's pr	operties	in various	quantu	m mechanical	problems		
	• understand the basics of relativistic quantum mechanics								
	• recognize the im		_	-			echanics		
	determine the tra	-				-			
	well, potential st								

	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1	Structure of Quantum Mechanics: Notion of state vector. Probability interpretation. Operators and observables, operators as matrices, significance of eigenvalues and eigenfunctions. Commutation relations. Measurement in quantum theory. Symmetry and Angular momentum Algebra: Symmetry operations and unitary transformations. Conservation laws. Space and time translations; rotation. Discrete symmetries: Space inversion, time reversal and charge conjugation. Symmetry and degeneracy. Rotation operator, generators of infinitesimal rotation, angular momentum algebra, eigenvalues of J^2 and J_z . Pauli matrices and spinors. Addition of angular momenta. Indistinguishability, symmetric and antisymmetric wave functions, incorporation of spin, Slater determinants, Pauli exclusion principle.	15
2	Time-independent Approximation Methods: Non-degenerate and degenerate perturbation theory. Stark effect, Zeeman effect and other examples. Variational methods. WKB approximation. Tunneling. Numerical perturbation theory, comparison with analytical results.	15
3	Time-dependent Problems: Schrödinger and Heisenberg pictures. Time-dependent perturbation theory. Transition probability calculations, Fermi's golden rule. Adiabatic and sudden approximations. Introduction to the quantization of electromagnetic field.	15
4	Relativistic Quantum Mechanics: Klein-Gordon equation, Dirac equation, Probability and Current Density, Plane Wave Solutions, Symmetries of the Dirac equation, Dirac's Equation for a Central Potential, Covariance of Dirac's Equation, Relativistic Hydrogen Atom Problem, The Hole Theory and Positrons. Interaction: Yukawa interaction, Coupling of electron and electromagnetic field, Feynman diagrams, Feynman rules, Path integration method: Probability amplitude as path integral, action, free particle and harmonic oscillator motion, Wick's Theorem. Scattering matrix.	15

- 2. P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press, UK, 4th Edition, 1988.
- 3. R. Shankar, Principles of Quantum Mechanics, Springer, Germany, 2nd Edition, 1994.
- 4. N. Zettili, Quantum Mechanics: Concepts and Applications, Wiley, USA, 2nd Edition, 2009.
- 5. J. J. Sakurai, Modern Quantum Mechanics, Pearson, India, 2nd Edition, 2013.
- 6. L. I. Schiff, Quantum Mechanics, McGraw Hill Education, USA, 4th Edition, 2017.
- D. J. Griffiths, Introduction to Quantum Mechanics, Cambridge University Press, UK, 3rd Edition, 2018.
- C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications, Wiley, USA, 2nd Edition, 2019.
- 9. Quantum Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning.
- 10. Quantum Mechanics: Foundations & Applications, Arno Bohm, 3rd Edn., 1993, Springer

Scheme Version:	Name of the subject:	_	Т	_	C	Semester:	Contact
	J					VII	Hours
							per
							Week: 12
2023-28	Physics					-	
	Laboratory-VII						Total Hours:
	-	0	0	12	6		180
							100
Subject	Applicable to	Evaluatio	CIE	45	Exami	nation Durat	ion:
Code: SBS	Programs:	n		Marks	2 h a u a		
PHY 03 704	Integrated B.Sc.	(Total			3 hours	5	
CC 00126	M.Sc. (Physics)	(Total Marks:	TEE	105	Prereg	uisite of Cou	rse: None
	Wi.Se. (Thysics)	150)		Marks			
		1.0)					
	Spectroscopy. Stu ten (10) experiment 8 experiments fro may be added. W included	nts of the abo m the C pro Vorkshop so	ove mentiogramminoldering	ioned list ng section and desi	of Physic n Exper gning of	cs experiments riments of equ f experiments	s and further ual standard s should be
	• To give hands-o	-		-	eneratin	g magnetic fie	eld and
Objectives	measurement of	-					
	To teach how teTo take measur	-				rious equipme	ant
				_	_		J11t
Course Outcomes	electronic devices atomic and molecular physics light wave sound waves etc.						

Physics Laboratory-VII

Unit No.	Content of Each Unit	Hours of Each Unit
1	 Hall Effect Four Probe Method to find band gap of semiconductor Electron Spin Resonance Frank-Hertz experiment PN Junction characteristics Solar cell characteristics Solar cell characteristics Velocity of ultrasonic wave in liquids Characteristics of MOSFET Diode as voltage regulator Ionization potential of mercury Planck's constant using LED Law of Malus Zener diode characteristics 	150
2	 Review of C/C++ Programming: Write a Program to calculate and display the volume of a CUBE having its height, width and depth. Write a C program to perform addition, subtraction, division and multiplication of two numbers Write a program to input two numbers and display the maximum number. Write a program to find the largest and smallest among three entered numbers and also display whether the identified largest/smallest number is even or odd. Write a program to check whether the entered year is leap year or not (a year is leap if it is divisible by 4 and divisible by 100 or 400.) Write a program to find the factorial of a number. Write a program to find GCD (greatest common divisor or HCF) and LCM (least common multiple) of two numbers 10. Write a program to generate Fibonacci series. 	30
Kingc 2. A. C.	TEXT BOOKS nop and Flint, Experimental Physics, Little hampton Book Services lom, 9th Edition, 1951. Melissinos, J. Napolitano, Experiments in Modern Physics, Acade oridge, Massachusetts, 2 nd Edition, 2003.	

Classical Electrodynamics

Scheme	Name of the subject:	L	Т	Р	С	Semester:	Contact
Version:						VIII	Hours
	Classical						per
	Electrodynamics						Week:
2023-28							3+1
		3	1	0	4		Total
							Hours:
							45+15
Subject	Applicable to	Evaluatio		30	Exam	ination Dura	tion:
Code:	Program:	n	CIE	Marks	3 hour	rs (Theory)	
SBS	Integrated B.Sc.	(Total		70	Prere	quisite of Co	urse:
PHY 03	M.Sc. (Physics)	Marks:	TEE	Marks	Under	graduate leve	2
801 CC		100)			Mathe	matical Physi	ics and
3104					Electricity and Magnetism		
Course	This course is designed for fundamental knowledge of basic electrodynamics and it's						
Descripti	applications to various						
on							
Course	• To understand	the fundame	ntals of	classical	electrod	vnamics and	four-vector
Objectiv	• To understand the fundamentals of classical electrodynamics and four-vector formalism						
es	 To get familiar with various concepts used in retarded potential theory. 						
	 To get fulfillar with various concepts used in retarded potential deory. To aware the students about modern problems in classical electrodynamics. 						
	After completion of this course, students would be able to:						
Course	• The students w	vill have an	unders	tanding o	of bound	darv value r	problems in
Outcome	electrodynamics			0		J	
s	• The student will		arn the	relativistic	transfo	rmation of EN	A fields
~	• The students wil						
	magnetic dipole						1 '
	• The students v	-	-			cepts of cha	rge particle
	acceleration tecl					1	0 1
	1	COURSE	SYLLA	BUS			
Unit No.		Content of	Each I	Unit			Hours of
				-			Each Unit
L							

	Review of Electrostatics and Magnetostatics	
1	Action-at-a distance vs. concept of fields, Poisson and Laplace equations	
	and formal solution for scalar potential with Green's functions, boundary	
	value problems; multipole expansion; Dielectrics, polarization of a	15
	medium; Clausius-Mossotti Relation, Electrostatic energy in dielectrics	15
	and Maxwell stress tensor, Magnetic multipole expansion of vector	
	potential, Magnetization, Magnetostatic energy densities and Magnetic	
	stress tensor	
	Covariant Formulation of Electrodynamics	
	Vector and Scalar potentials in electrodynamics, gauge invariance and	
	gauge fixing, Coulomb and Lorenz gauges. The Electromagnetic field	
2	tensor and its transformation under Lorentz transformations: relation to	15
	known transformation properties of E and B. Covariant formulation of	
	Maxwell's equations, Equation of motion of charged particle, Motion of	
	charged particles in external electric and magnetic fields.	
	Electromagnetic Radiation: Introduction to retarded potentials.	
2	Potentials due to a moving charge: Lienard Wiechert potentials. E and B	1 –
3	due to a uniformly moving charge. E and B due to an accelerating charge	15
	particle: Power radiated, Larmor's formula and its relativistic	
	generalization.	
	Interaction of Matter with Charge Particles and Advanced	
	Acceleration Techniques: Radiation Bremsstrahlung and transition	
	radiation, Thomson scattering, Synchrotron radiation and undulator	15
4	radiation, Coherent emission from multiple particles, Coherence and	
	Form factor, Radiation from relativistic particle traveling through matter:	
	Cherenkov radiation	
	TEXT BOOKS	
• Cl	assical Electrodynamics, J D Jackson, Wiley; Third edition, 2003	
• Th	ne Classical Theory of Fields, L.D Landau, E.M Lifshitz, 4th Edn., 2003, Els	
	assical Electricity and Magnetism, W. K. H. Panofsky and M. Philips, Dove	r Publication
	id Edn, 2012	002
	odern Problems in Classical Electrodynamics, Chales A Brau, OUP USA, 20 assical Electrodynamics, S P Puri, Narosa Publishing; 2011	103
	troduction to Electrodynamics, D.J. Griffiths, 2018, Fourth Edition, Pearson	Education
	cynman Lectures, Vol. II, R.P.Feynman, R.B.Leighton, M.Sands, 2008, Pears	
• Fe		
	Rays and Extreme Ultraviolet Radiation: Principles and Applications, Da	via Attwood

Atomic and Molecular Physics

Scheme Version: 2023-28	Name of the subject: Atomic and Molecular Physics	L	T	Р	С	Semester: VIII	Contact Hours per Week: 3+1
	1 190100	3	1	0	4		Total Hours: 45+15
Subject	Applicable to	Evalu		30	Exam	ination Dura	tion:
Code:	Programs:	ation	CIE	Marks	3 hour	rs (Theory)	
SBS PHY 03 802	Integrated B.Sc. M.Sc. (Physics)	(Total		70		quisite of Co	urse:
CC 3104	WI.Se. (I Hysics)	Mark	TEE	Marks	Moder	rn Physics	
		S:					
0	A: C (1 :	100)	. 1 . 1	L .	L ,	1 1 1	
Course Descripti on	Aim of the course is and to understand th				s atomic	and molecul	ar spectra
Course Objective s	The students will be exposed to Rotation and Vibration spectroscopy Raman Effect and Raman spectroscopy of molecules. Working of Lasers 						
Course Outcome sOn completion of the course, student would be able to : • Understand different models of an Atom • Derive the energy distribution corresponding to different levels of an atom • Understand rotation spectroscopy and Understand Raman Effect and Raman spectroscopy of molecules. • Understand the working of He-Ne Laser and Ruby Laser.							
Linit No.			RSE SYLL				Hours of
Unit No.		Cont	ent of Eacl	i Unit			Hours of Each Unit

		Atomic Spectra I:					
	1	Review of Atomic Models: Rutherford's Model, Bohr's model, Sommerfeld's model, Stern-Gerlach experiment for electron spin. Revision of quantum numbers, exclusion principle, electronic configuration. Relativistic correction to energy levels of an atom, atom in a weak uniform external electric field – first and second order Stark effect.	15				
	2	Atomic Spectra II: Spin-orbit interaction and fine structure, LS and JJ coupling, Relativistic correction to spectra of hydrogen atom, Lamb shift, effect of magnetic field on the hydrogen atom spectra, Zeeman and Paschen-Back effect. Hyperfine structure and isotope shift, Auger Effect and Frank Condon Principle. Born-Oppenheimer approximation.	15				
	3	Molecular spectra: Rotational levels in diatomic and polyatomic molecules, vibrational levels in diatomic and polyatomic molecules, diatomic vibrating rotator, Born-Oppenheimer approximation, Vi vibrational levels, experimental aspects of vibrational and rotational spectroscopy of molecules, polarization of light and Raman effect, Raman Spectroscopy (Brief Introduction).	15				
	4	Lasers: Spontaneous and stimulated emission, Spatial and temporal Coherence, Einstein A and B coefficients, Optical Pumping, Population Inversion, Modes of resonator, Q-switching and Mode Locking, Ultra short pulse generation, He-Ne Laser and Ruby Laser- Principle, Construction and working, Application of lasers in the field of medicine and Industry.	15				
		Text Books					
		hite, Introduction to Atomic Spectra, McGraw Hill, New York, 1 st Edition					
	H. G. Kuhn, Introduction to Atomic Spectra, Green and Co., Harlow, 2 nd Edition, 1969. K. Thyagarajan and A.K. Ghatak, Lasers - Theory and Applications, Plenum Press, New York,						
	1 st Edition, 1981.						
4.	B. H.Bransden and C. J Joachain, Physics of Atoms and Molecules, Pearson, UK, 2 nd Edition, 2003.						
5.	R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles,						
6.		Jnited States, 2 nd Edition, 2006. Beiser, Perspectives of Modern Physics, McGraw Hill, New York, 6 th Editi	ion 2006				
7.		nwell, Fundamentals of Molecular Spectroscopy, McGraw Hill, New York					
	2017.		,,				

Nuclear Physics

Scheme Version:	Name of the subject: Nuclear	L	Т	Р	С	Semester: VIII	Contact Hours per
2023-28	Physics						Week:
		3	1	0	4		3+1 Total Hours: 45+15
Subject Code:	Applicable	Evaluatio		30	Exami	nation Dura	tion:
SBS PHY 03	to Programs:	n	CIE	Marks	3 hours	s (Theory)	
803 CC 3104	Integrated	(Total		70	Prereq	uisite of Co	urse:
	B.Sc. M.Sc.	Marks:	TEE	Marks		natical Phys	ics and
~	(Physics)	100)				m Physics	
Course Description	This course wi properties of nu						-
Course Objectives	 Students will be exposed to General properties of nuclei Interactions among the nucleons Different models developed to explain the nuclear structure 						
Course Outcomes	 After completion of this course, the students will be able to Understand basic properties of nuclei Understand interactions between nucleons, meson theory and spin dependence of nuclear forces Get knowledge about Nuclear models, Magic numbers, and Collective nuclear model. 						
	•	COURS	E SYLL	ABUS			
Unit No.		Conten	t of Ea	ch Unit			Hours of Each Unit
1	Introductory Concept of Nuclei: Scattering and electromagnetic methods for determining the nuclear radius, Nuclear angular momentum, Nuclear magnetic dipole moment and Electric quadrupole moment, Parity quantum number, Statistics of nuclear particles, Nuclear Disintegration: Simple theories of decay, Properties of neutrino, Non conservation of parity and Wu's experiment in beta decay, Electron capture, Internal conversion.						15
2	Inter Nucleon deuteron groun of nuclear for Charge-indepen	Forces: Prind state, Spin ces, Nucleon	depend	ence and scattering	tensor c ng at lo	component w energy,	15

	and saturation of nuclear forces, Exchange forces, Elements of						
	meson theory.						
3	Nuclear Structure and Models: Fermi gas model, Experimental evidence for shell structure in nuclei, Basic assumption for shell model, Single- particle energy levels in central potential, Spin- orbit potential and prediction of magic numbers, Extreme single- particle model, Prediction of angular moment, Parities and magnetic moment of nuclear ground states, Liquid drop model, Semi-empirical mass formula, Nuclear fission, The unified model, rotational model.	15					
4	Nuclear Reactions: Reaction mechanism, compound nuclei and direct reactions, heavy ion reactions, fusion-fission dynamics, Quantum mechanical fragmentation theory, Radioactive ion beams, cross-section, Nuclear Dynamics at Intermediate and high energies, Isospin dependent and independent models, Multifragmentation, Directed flow, elliptical flow, nuclear stopping, Experimental Scenario.	15					
	TEXT BOOKS						
1. Roy & Nigan	n, Nuclear Physics, John Wiley & Sons, USA, 1 st Edition, 1967.						
	duction to Nuclear Physics, Addison Wesley, USA, 1st Edition 196	59.					
-	IM Digit and VE Weighter Theoretical Nuclear Division Commony 1st Edition						

3. J.M. Blatt and V.F. Weisskopf, Theoretical Nuclear Physics, Springer, Germany, 1st Edition, 1969.

4. M.Leon, Particle Physics: An introduction, Elsevier, Netherlands, 1st Edition, 1973.

5. S. N. Ghoshal, Nuclear Physics, S. Chand, India, 1st Edition, 1994.

6. F.I. Stancu, Group Theory in Subnuclear Physics, Clarendon Press, UK, 1st Edition, 1997.

7. J.D. Walecka, Theoretical Nuclear and Subnuclear Physics, World Scientific, Singapore, 2nd Edition, 2004.

8. B. R. Martin and G. Shaw, Particle Physics, John Wiley & Sons, USA, 3rd Edition, 2008.

Physics Laboratory-VIII

Scheme Version:	Name of the subject:	L	Т	Р	C	Semester: VIII	Contact Hours per Week: 12
2023-28	Physics Laboratory-VIII	0	0	12	6		Total Hours: 180
Subject	Applicable to	Evaluatio		45	Exami	nation Durat	ion:
Code: SBS	Programs:	n		Marks	3 hours	,	
PHY 03 804 CC 00126	Integrated B.Sc. M.Sc. (Physics)	(Total Marks:	CIE		5 nours	,	
	(11,500) (11,9003)	100)	TEE	105 Marks	Prerequisite of Course: None		
Course Description	The aim & objective of the course is to impart the practical training on various electronics devices such as; Op-Amp, Vibrators, Amplifiers, Michelson interferometer etc. Students assigned the general laboratory work will perform at least twelve (12) experiments from the above mentioned. More experiments of similar nature may be added.						
Course Objectives	 To train students for various electronics experiments and take measurements To train students on various optical instruments like Spectrometer, Michelson Interferometer To have hand on experiment for measurement of magnetoresistance and dielectric constant. 						
Course Outcomes	 After completion of this course, the students will be able to Understand spectral lines, grating spectra, and interference fringes Learn the characteristics of Op-Amp, vibrators, clipper, clampers, and DA/AD Use excel for plotting graphs Understand motion of temperature and magnetic field dependence of Hall coefficient. 						

		Each Unit
1	 Study of Balmer series and Rydberg constant Op-Amp as inverting and non-inverting amplifier Op-Amp as differentiator, Integrator and Adder e/m by Thomson method Single stage RC coupled amplifier Frequency response of common emitter amplifier Bistable/Monostable/Astable vibrators Grating spectra Refractive index of water and oil using prism Magneto resistance Temperature dependence of Hall coefficient Digital to Analog converter, Analog to Digital converter Michelson Interferometer Faraday Effect Clipper and clampers 	150
2	 Root finding of a polynomial equation using numerical methods Solving first and second order differential equation numerical methods Numerical integration Generating finite and infinite series 	30
1 Worspo	TEXT BOOKS op and Flint, Experimental Physics, Little hampton Book Services	Ltd United

Condensed Matter Physics

Scheme Version: 2023-28	Name of the subject: Condensed	L	Т	Р	C	Semester: IX	Contact Hours per Week: 3 +1
2023 20	Matter Physics	3	1	0	4		Total Hours: 45 + 15
Subject Code: SBS	Applicable to Program:	Evaluation (Total	CIE	30 Marks		ination Dur s (Theory)	
PHY 03 901 CC 3104	Integrated BSc-MSc Physics	Marks: 100)	TEE	70 Marks	Prere	quisite of Constants	
Course Description	This course is magnetic and op	-	-		underst	anding abou	it energy bands,
Course Objectives	 To understand the energy band phenomenon in solids To make acquainted with magnetic and optical properties of solids To develop the scientific and positive attitudes in students related to the condensed matter physics To able the students for solve the problems related to condensed matter physics 						
Course Outcomes	 To able the students for solve the problems related to condensed matter physics At the end of this course, the students will be able to Learn various exciting phenomena such as electron behaviour in periodic potential, effective mass and tight-binding approximation. Understand the theories and phenomena of diamagnetism, paramagnetism, and ferromagnetism. Explain the origin of domains in magnetic materials. Illustrate some exciting phenomena such as optical refractive index, relative dielectric constant and luminescence in solids. 						
		COU	RSE SYL	LABUS			
Unit No.			nt of Each				Hours of Each Unit
1	Energy Bands in Solids: Electron in Periodic Potential, Bloch Function, Kroning-Penney Model of Behaviour of an Electron in a Periodic Potential. Velocity and Effective Mass of an Electron. <i>E-K</i> Relationships in Various representations: Reduced, Periodic and Extended Zone Schemes. Energy Band Calculations: Origin of the Energy Gap, Nearly Free Energy and Tight-Binding Approximations. Construction of Fermi Surfaces in Brillouin zones for Two – Dimensional Lattices						15
2	Diamagnetism Diamagnetism,						15

	Systems, Langevin's Theory of Paramagnetism, Quantum Theory of	
	Paramagnetism: Rare Earth Ions; Hund Rule; Iron Group Ions; Crystal	
	Field Splitting, Van Vleck Paramagnetism, Nuclear Paramagnetism,	
	Cooling by Adiabatic Demagnetization, Paramagnetic Susceptibility	
	of Conduction Electrons.	
	Magnetic Ordering: Ferromagnetic Order: Weiss Theory of	
	Ferromagnetism; The Exchange Interaction; The Heisenberg Model,	
	Ferrimagnetic Order: Curie Temperature and Susceptibility of	
3	Ferrimagnets, Antiferromagnetic Order, Ferroelectric Domains:	15
	Anisotropy Energy; The Bloch Wall; Origin of Domains; Coercivity	
	and Hysteresis, Spin Waves: Magnons in Ferromagnets; The Bloch $T_{3/2}^{3/2}$ L	
	$T^{3/2}$ Law, Determination of Magnetically Ordered Structures, Some	
	New Magnetic Materials: GMR-CMR Effects.	
	Optical Properties of Solids: Classical Model (Drude-Model), Ionic	
	Conduction, Optical Refractive Index and Relative Dielectric	
4	Constant, Optical Absorption in Metals, Insulators, and	15
	Semiconductors, Luminescence of Solids, Types of Luminescence	
	Systems, The Excitons: Weakly Bound Excitons and Tight Bound	
	Excitons. Color Centers.	
• Introd	TEXT BOOKS	die Drug I gal
	uction to Solid State Physics, Charles Kittel, 8th Edition, 2004, Wiley In	
Eleme	ents of Solid State Physics, J.P. Srivastava, 4th Edition, 2015, Prentice-H	all of India
Introd	uction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill	
• B. D.	Culity and C. D. Grahim, Introduction to Magnetic Materials, Wiley, U	USA, 2nd Edition,
2008.		
	State Physics, N.W. Asheroft and N.D. Marmin, 1076, Canagage Learnin,	a.

• Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning

• Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India

Particle Physics

Scheme	Name of the	L	Т	Р	C	Semester:	Contact		
Version:	subject:					IX	Hours		
	Particle						per		
	Physics						Week: 3+1		
2023-28		3	1	0	4		Total		
							Hours:		
							45+!5		
Subject Code:	Applicable	Evaluatio		30	Exami	nation Dura	tion:		
SBS PHY 03	to Programs:	n	CIE	Marks	3 hours	s (Theory)			
902 CC 3104	Integrated	(Total		70	Prereq	uisite of Cou	urse:		
<i>J</i> 02 CC <i>J</i> 104	Integrated	Marks:	TEE	Marks	Mather	natical Physic	cs, Quantum		
	B.Sc. M.Sc.	100)			Physics	s and Nuclear	r Physics		
	(Physics)								
Course	To impart the k	nowledge of	fundam	ental part	icles, fu	ndamental int	teraction and		
Description	the range and	-		-					
-	antiparticle or 1	-			1 1				
	Student	s will unders	tand the	different	type of 1	particles and	interactions		
Course	among				- J F 1				
Objectives	e		le to un	derstand	the cons	ervation laws	s in particle		
Ū	physics						F		
		s will get to l	know the	e producti	on cross	section for p	articles		
		-		w the production cross section for particles d the quark model.					
	After completion			-		ble to			
	1								
Course						l the propertie	-		
Outcomes		-	-		-	k model for h			
Outcomes	• Properties of neutrons and protons in terms of a simple quark model								
	• Weak interaction between quarks and how that this is responsible for β								
	decay.								
	• Leptons and how the (electron) neutrinos and (electron) antin						neutrinos are		
	produce	ed during β+	•		pectively	7			
		COURS	E SYLL	ABUS					
Unit No.		Conter	nt of Ea	ch Unit			Hours of		
			•				Each Unit		

							
	Introduction: Fermions and bosons, Particles and antiparticles, Quarks and leptons, Interactions and fields in particle physics,						
1	Classical and quantum pictures, Yukawa picture, Types of	15					
1 I	interactions - electromagnetic, weak, strong and gravitational,	10					
	units.						
	Invariance Principles and Conservation Laws: Invariance in						
2	classical mechanics and in quantum mechanics, Parity, Pion	15					
	parity, Charge conjugation, Positronium decay, Time reversal						
	invariance, CPT theorem.						
	Hadron-Hadron Interactions: Cross section and decay rates,						
3	Pion spin, Isospin, Two-nucleon system, Pion-nucleon system,	15					
5	Strangeness and Isospin, G-parity, Total and Elastic cross	10					
	section, Particle production at high energy.						
	Static Quark model of Hadrons: The Eightfold way, Meson						
	nonet, Baryon octet, Baryon Decuplet, hypothesis of quarks, SU						
	(3) symmetry, Quark spin and color, Quark-antiquark						
4	combinations.	15					
4	Weak Interactions: Classification of weak interactions, Fermi	15					
	theory, Weinberg-Salam model, Parity non-conservation in β -						
	decay, Helicity of neutrino, Experimental verification of parity						
	violation, K-decay.						
-	TEXT BOOKS						
1. Perkins 3 rd Ed.	, D.H., Introduction to High Energy Physics, Cambridge University	v Press, 2000,					
2. Hughes	s, I.S., Elementary Particles, Cambridge University Press, 1991.						
	F.E., Introduction to Quarks and Partons, Academic Press, 1979.						
0	E., Nuclei and Particles, Benjamin-Cummings, 1977.	14					
5. Khanna	5. Khanna, M.P., Introduction to Particle Physics, Prentice-Hall of India, 2004.						

Physics Laboratory-IX

Scheme Version: 2023-28	Name of the subject: Physics Laboratory-IX	L	Т	Р	С	Semester: IX	Contact Hours per Week: 12
		0	0	12	6		Total Hours: 180
Subject	Applicable to	Evaluatio		45	Exami	nation Durat	ion:
Code: SBS	Programs:	n		Marks	3 hours	1	
PHY 03 903 CC 00126	Integrated B.Sc. M.Sc. (Physics)	(Total Marks:	CIE		J Hours	,	
		100)	TEE	105 Marks	Prerequisite of Course: None		
Course Description	 Aim of Lab III is to train students for advanced practical problems related to solid state physics, nuclear physics, electronics, numerical techniques and material science. Each student is required to perform at least five experiments from Section A and at least three experiments from any one of the optional subtopics of Section B: (i) Electronics (ii) Thin Film and Nano-Material (iii) Numerical Techniques; depending upon the courses opted under discipline centric elective course 						
Course Objectives	 To train students on advanced experiments To give training on advance instruments To introduce students to latest numerical techniques 						
Course Outcomes	 After completion of this course, the students will be able to Do some experiments based on nuclear physics, electronics, computation and solid state physics. Understand the basic synthesis and characterization techniques for different materials such as thin films and nanoparticles. Perform advanced experiments like DTA, TGA, UV-VIS, Microwave furnace and thin film coating techniques. Learn advance techniques of numerical analysis 						

	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1	 Kerr Effect Curie Temperature B-H curve Dielectric constant Solid State Nuclear Track Detector (SSNTD) G.M. Counters: characteristics, dead time and counting statistics Scintillation detector-energy calibration, resolution and determination of gamma ray energy Quinck's tube method to find susceptibility of a material Nuclear Magnetic Resonance Zeeman Effect To study Lattice Dynamics 	90
2	 (i) Electronics 1. PCM/delta modulation and demodulation 2. Fiber optic communication 3. Modulation/Demodulation 4. 4-bit ripple counter (ii) Thin Film and Nano-Material 1. Data Analysis of XRD, SEM and TEM 2. Chemical Deposition (for CNT growth) 3. ZnO wire by thermal oxidation 4. Band gap estimation by Tauc-plot method 5. Thin film deposition technique 6. DTA/TGA analysis (iii) Numerical Techniques 1. Solution of Linear algebraic equation: Gauss Jordan elimination, Singular Value Decomposition, Sparse linear system. 2. Evaluation of Functions: special functions, evaluation of functions by path integration, incomplete gamma, beta function. 3. Random Numbers: Uniform random numbers generators, statistical distributions and their properties, Rejection Methods, transformation method, simple Monte Carlo integration, Adaptive and recursive Monte Carlo methods, 	90

4.	Signal Processing: FFT, IFFT, Filtering with FFT, convolution and correlation functions, application to real							
	time series data.							
5.	Eigen systems: Solving eigenvalues and finding eigenfunctions of Schrodinger equation for analytically							
	unsolvable potentials using variational principle.							
TEXT BOOKS								

1. Albert Malvino, Digital Principles and Applications, McGraw Hill, New York, 4th Edition, 1986.

2. A. C. Melissinos, J. Napolitano, Experiments in Modern Physics, Academic Press, Cambridge, Massachusetts, 2nd Edition, 2003.

3. W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Numerical Recipes in C/C++: The Art of Scientific Computing, Cambridge University Press, 3rd Edition, 2007.

4. J. P. Sethna, Statistical Mechanics: Entropy, Order Parameters, and Complexity, Oxford University Press, 2nd Edition, 2007.

5. E. Balagurusamy, Numerical Methods, Tata McGraw Hill, New Delhi, 1st Edition, 2017.

DSE Courses

(for Semester VII to IX)

Statistical Mechanics-II

Scheme	Name of the	L	Т	P	C	Semester:	Contact		
Version:	subject:						Hours		
	Statistical						per		
	Mechanics-II					VII	Week:		
2023-28							3+1		
							Total		
		2	1	0			Hours:		
		3	1	0	4		45 +15		
Subject	Annliaghla	Evaluation	CI	30	Evom	ination Dura	tion 2		
Subject Code:	Applicable	Evaluation	E	30 Marks		mation Dura	uon: 5		
Coue:	to Programs:	(Total	L	IVIALKS	hours				
SBS PHY 03	Programs: Integrated	Marks: 100)	TE	70	Pre	erequisite of	Course:		
701 DS 3104	B.Sc. M.Sc.		Ε	Marks	Grad	luation Level	Quantum		
	(Physics)				Mech	nanics and Ma	thematical		
	(I Hysics)					Physics			
	condensed mat	ter physics, class	ical m	echanics a	nd elect	rodynamics.			
Course Objectives	 To understand the fundamentals of thermodynamics and statistical mechanics To make familiar with various thermodynamical and statistical mechanics terms such as entropy, free energy, phase space, statistical ensembles, Bose-Einstein statistics, Fermi-Dirac statistics etc. To able the students for solve the problems related to thermodynamics and statistical physics 								
	At the end of the	nis course, the stu	idents	will be ab	le to				
Course Outcomes	 At the end of this course, the students will be able to Explain the various thermodynamical quantities and Maxwell's relations Apply the thermodynamics in ideal gas, magnetic and dielectric materials Describe various statistical approaches which describe systems of particles Evaluate the formulae of random walk and diffusion equation Compare microstates, macrostates, and statistical ensembles 								

	 Understand the theories and mathematical approach ensembles, equipartition theorem and Maxwell-Boltzm Illustrate the fundamental concepts of Bose-Einstein Statistics Calculate the problems related to Bosons and Fermions COURSE SYLLABUS 	ann statistics
Tu:4 No		Houng of Fosh
Unit No.	Content of Each Unit	Hours of Each Unit
1	Review of Thermodynamics: Extensive and intensive variables, laws of thermodynamics, Entropy for Different Systems, Gibbs Paradox, Boltzmann Relation for Entropy, Legendre Transformations and Thermodynamic Potentials, Chemical Potential, Free Energy and Its Connection with Thermodynamic Quantities, Maxwell Relations, Applications of Thermodynamics to (a) Ideal Gas, (b) Magnetic Material, and (c) Dielectric Material.	15
2	Statistical Methods and Description of Systems of Particles: Binomial distribution, Poisson distribution, Gaussian distributions, Central Limit Theorem, Random Walk and Brownian Motion, Diffusion Equation, Phase Space, Liouville's Theorem, Phase Equilibrium, Microstates and Macrostates, Statistical Ensembles, Irreversibility and the Attainment of Equilibrium	15
3	Classical Statistical Mechanics: Micro-Canonical Ensemble, Canonical Ensemble: Derivation of Partition Function and Thermodynamic Quantities; Mean Values and Fluctuations, Grand Canonical Ensemble: Gibbs Factor; Gibbs Distribution; Derivation of Partition Function and Thermodynamic Quantities; Fluctuations in the Number of Particles, Applications of Canonical and Grand Canonical Ensembles, Equipartition Theorem and It's Applications, Maxwell-Boltzmann Statistics.	15
4	Quantum Statistical Mechanics: Bosons: Occupation Number; Bose-Einstein Statistics; Debye Theory of Specific Heat; Grand partition function For Ideal Bose Gas; Black- Body Radiation; Bose-Einstein Condensation, Fermions:	15

	Occupation Number; Fermi-Dirac Statistics; Ideal Fermi gas,
	Pauli Paramagnetism, First and Second Order Phase
	Transitions, Ising Model, Phase Equilibria: Equilibrium
	Conditions; Simple Phase Diagrams; Clausius-Clapeyron
	Equation
	TEXT BOOKS
	F. Reif, Fundamental of Statistical and Thermal Physics, McGraw-Hill, USA, 1965.
2.	L. D. Landau and E. M. Lifshitz, Statistical Physics, UK, 3 rd Edition, 1980.
3.	D. V. Schroeder, An Introduction to Thermal Physics, Addison Wesley Longman, UK,
	2000.
4.	J. P. Sethna, Statistical Mechanics: Entropy, Order Parameters and Complexity, Oxford
	University Press, UK, 2006.
5.	M. Kardar, Statistical Physics of Particles, Cambridge University Press, UK, 2007.
6.	H. Gould and J. Tobochnik, Statistical and Thermal Physics: With Computer Applications
	Princeton University Press, USA, 2010.
7.	K. Huang, Statistical Mechanics, Wiley, India, 2 nd Edition, 2011.
8.	R. K. Pathria and P. D. Beale, Statistical Mechanics, Academic Press, USA, 2011.

Introduction to Hydrogen Energy Systems

Subject Code: SBS PHY 03	Applicable to Programs: Integrated		CIE	30	4 Exai	nination Dur	3+1 Total Hours: 45 +15 ration: 3
03	B.Sc.	Evaluation (Total	CIE	Marks	hour	S	
702 DS 3104	M.Sc. (Physics)	Marks): 100	TEE	70 Marks	None		
Course Description	To introduce the concept enlighten the knowledge						uel. To
Course Objectives	This course aim is to a application, as a future s	give insight o	f hydro		<u> </u>		their
Course Outco mes:	 The Course will sources of energy issues. There is very good days of saving the government of I Conservation B energy efficient industry, built er To teach fundate processes, separate elective subjects automotive inded development relationative sector. This course has a hydrogen energy storage and hydrogen energy	gy technologie od scope for sav the environme India has pass uilding Code measures the nvironment, tra mentals of hy ation and utiliz as well as to lustries and lated sectors ors. objectives to en- y architecture rogen sensing. equate inputs s and standard	es and p ving ener ent, ener ed Ener (ECBC ere is t ansport adrogen cation th o increas hydrog as abou laborate and fol on a v s in hyd	brovide ad ergy, by us rgy conser- rgy Conser C-2007), if remendou etc. energy at at is necess se the pot gen produ- it 40% er PG stude lowing ke	lequate ing it j vation rvatio in this s scop s ener sary for ential uction nergy ents reg ey con issue	e inputs on a judiciously. D plays a vital n Act-2003 a s regard. By pe of saving gy systems, p or taking some for job oppor & its inf is being con garding curren cepts such as s relating to	variety of uring these l role. The nd Energy observing energy in production e important trunities in rastructure isumed by nt trends in s hydrogen

Unit No.	Content of Each Unit	Hours of Each Unit
1.	Hydrogen Energy Pathways- Properties of hydrogen, Global and Indian hydrogen energy scenario, need for hydrogen, current uses, environmentally sustainable hydrogen, hydrogen as part of Climate Neutral Strategy. Hydrogen for mobility applications & vehicles, Overview of Hydrogen utilization: I.C. Engines, gas turbines, hydrogen burners, power plant, refineries, domestic and marine applications.	15
2.	 Hydrogen Production-Production of hydrogen from hydrocarbons- oxidative and nonoxidative processes, coal. Hydrogen production using nuclear energy and renewables- wind, biomass, solar. Hydrogen separation and purification-Pressure swing adsorption, Solvent based absorption, membrane separation, cryogenic separation etc. 	15
3.	Hydrogen Storage -Types of hydrogen storage (Gaseous, Liquid, Solid hosts), Gibbs Phase Rule, Pressure-Composition-Temperature plots; Van't Hoff plots for absorption desorption enthalpies, Gravimetric capacities, Hysteresis in cycling, Joule-Thomson Effect, Non-ideal treatment of hydrogen gas Kinetics: Hydrogen absorption/desorption phenomena (chemisorption, nucleation and growth and diffusion), Kinetic models, Kissinger analysis for activation energy estimation, Hydrogen adsorption isotherms-BET, design and applications of storage systems, materials for hydrogen storage, Hydrogen storage for automobiles.	15

4.	Hydrogen sensing-Traditional methods of hydrogen sensing using	15
	thermal conductivity measurements or Gas Chromatography, Mass	
	Spectroscopy or laser gas analysis; Solid state sensors- their working	
	principle and applications at industrial scale.	
	Hydrogen Safety-Physiological, physical and chemical hazards,	
	hydrogen properties associated with hazards, Hazard spotting,	
	evaluation and safety guidelines, Hydrogen safety codes and standards.	
	Hydrogen safety barrier diagram, risk analysis, safety in handling and	
	refueling station, safety in vehicular and stationary applications,	
	fire detecting system, safety management.	
		1

REFERENCE BOOKS

- 1. F. Peter, Fuels and Fuel Technology, A.Wheatan & Co. Ltd., 1st edition, 1965.
- 2. JOM Bockris, Energy options: Real Economics and the Solar Hydrogen System, Halsted Press and London publisher, 1980.
- 3. S. Sarkar, Fuels and Combustion, Orient Longman, 2nd edition, 1990.
- 4. J Twidell and T Weir, Renewable Energy Resources, Taylor and Francis (Ed), New York, USA, 2006.
- 5. J. G. Speight, The chemisty & Technology of Petroleum, 4th edition, CRC Press, 2006.
- 6. M. Ball and M. Wietschel, The Hydrogen Economy Opportunities and Challenges, Cambridge University Press, 2009.
- 7. J.G. Speight and B. Ozum, Petroleum Refining Process, CRC Press, 2009.
- 8. W. Lyons, Working Guide to Petroleum and Natural Gas Production Engineering, Elsevier Inc, 2009.
- 9. Ke Liu, C. Song and V. Subramani, Hydrogen and Syngas Production and Purification Technologies, John Wiley & Sons, 2010.
- 10. M.K.G. Babu, K.A. Subramanian, Alternative Transportation Fuels: Utilization in Combustion Engines, CRC Press, 2013.
- 11. J. G. Speight, The Chemistry and Technology of Coal, CRC Press, 2013.

Astrophysics of Stars

Scheme Version: 2023-28	Name of the subject: Astrophysics of Stars	L	Τ	Р	C	Semester: VII	Contact Hours per Week: 3+1
		3	1	0	4		Total Hours: 45+15
Subject	Applicable to	Evalua		30		ination Dur	ration:
Code: SBS	Programs:	tion	CIE	Marks	3 hour		
PHY 03 703 DS 3104	Integrated B.Sc. M.Sc. (Physics)	(Total Marks: 100)	TEE	70 Marks		equisite: Int ronomy and	roduction Astrophysics
Course Description	Stars are the fun amounts of energ the evolution of t	y and mon	nentum int			-	
Course Objectives	Aim of this cours that, to us, is a m				-	on deep insid	le an object
Course Outcomes	UnderstarUnderstarUnderstarKnow abo	the basic p nd how rad nd how to pout the pro- tion and even	arameters liation inte produce th cesses that plution of	of stars. racts with e spectra t determine stars.	matter athat we	at the surface observe erior structur	
	1		SE SYLL				
Unit No.		Conte	ent of Eac	h Unit			Hours of Each Unit
1	Stellar Observa Blackbody radiat binaries, Eclipsi Russel diagram,	ion, Colors	s & line sp ctroscopic	ectra, Bin binaries,	ary syst		15
2	Stellar Atmospl Radiation & r approximation, atmospheres, Op Line strengths	natter , The gr	Radiative ey atmo	transfer, sphere,	The Realist	Eddington ic model	15

3	Stellar Interiors: Mechanical structure, The virial theorem, Polytropes, Equation of state, Energy conservation; diffusive transport, Mass-luminosity relation; main sequences, Convective transport, Energy generation, Nuclear fusion networks, Fusion rates, Rotation, Stellar model building	15
4	Stellar Evolution: The main sequence, The Sun, Massive stars, Star formation, Pre-main-sequence evolution, Evolution off the main sequence, Helium burning & beyond, Stellar death, Stellar pulsation, White dwarfs, Neutron stars	15
	Text Books	
	ction to Modern Stellar Astrophysics", Bradley W Carroll and Dale A	Ostlie
•	3053034830), Cambridge University Press (2017)	
2. "Stellar Str	ucture and Evolution", R. Kippenhahn & A. Weiger, (2012) Springer	-Verlag
Berlin Heidelb	0	
	d Evolution of the Stars, by M. Schwarzschild. (ISBN : 97806916528	32), 2016,
Princeton Univ	versity Press	
	ospheres, by Ivan Hubeny, Springer Verlag	
5. Radiative Pr	cocesses in Astrophysics : G. Rybiki and A. Lightmann, 2004 WILEY	Z-VCH
Verlag GmbH	& Co.	

Digital Electronics and Microprocessor

Scheme Version: 2023-28	Name of the subject: Digital Electronics and Microprocessor	L	T	Р	С	Semester: VIII	Contact Hours per Week: 3+1 Total Hours:
		3	1	0	4		Hours: 45+15
Subject	Applicable to	Evaluatio		30	Exam	ination Dura	tion: 3
Code: SBS PHY	Programs: Integrated	n (Totol	CIE	Marks	hours		
801 DS 31	B.Sc. M.Sc.	(Total Marks: 100)	TEE	70 Marks	Prere	quisite of Cou	irse: None
Course Descripti		-	-	-			interfacing
Course Objectiv	5						
Course Outcom	es To unde language To unde interfaci	rstand the bas	sic prop propert levices.	erties of t	micropr terfacing	g data conve	rters and
		COURSE	E SYLL	ABUS			
Unit No.	(Content of Ea	ch Unit				Hours of Each Unit
1	Microprocessor: B Microprocessor (P) I/O devices. Assemb addressing modes, t operations-Programm	8085 Architec ly language pro iming diagran	ture, m ogramm n, Data	emory int ing : Instr	erfacing uction c	g, interfacing classification,	15

2	 Programming techniques for 8085 microprocessor, Counters and timer delays, Stack and subroutines, Code conversion, BCD, Arithmetic and 16-bit Data operations, Interrupts of 8085, Vectored and nonvectored, maskable and nonmaskable interrupts. Interfacing data converters – A/D and D/A, Programmable interface devices – 8255A programmable interface, Interfacing keyboard/Display and Seven-segment display 	15
3	Interfacing Programmable Peripheral Devices – interfacing keyboard and seven segment display, 8254 programmable interval timer, 8259A programmable interval timer, 8259 Programmable Interrupt Controller. Serial communications, Software controlled Asynchronous Serial I/O, Programmable communications interface 8251, RS232	15
4	Microcontrollers - Overview of the 8051 family, Architecture of 8051, Timers, Interrupts and serial communication in 8051, 8051 programming in C, 8051 timer programming in C, Serial port programming, Interrupts programming.	15
	TEXT BOOKS	
(Prentice 2. Badri H	h S. Gaonkar, Microprocessor Architecture, Programming and Applications Hall) 2002. Ram, Advanced Microprocessors and Interfacing, (Tata McGraw Hill), 200 as V. Hall, Microprocessors and Interfacing programming and Hardware (T 5.	1.
4. The 80 Mckinley	 951 Microcontroller and embedded Systems by M. Ali Mazidi, J.G. Mazidi (Pearson Education) 2009. 051 Microcontroller – I. Scott Mackenzie, R. Chung Wei Phan (Dorling) 	
 6. Microc 7. Microc 	4th ed. 2007. controllers - A.J. Ayala, (Penram International), 2nd ed. 1996. controllers : Arch., Programming, Interfacing & System design, Rajkam ey (India)), 2009.	al, (Dorling

8. Microcontroller (Theory & Applications), Ajay V Deshmukh (Tata McGraw Hill) 2012.

9. Embedded System Design, Rajeshwar Singh (Dhanpat Rai), 2nd Ed. 2009.

Solar Energy and Physics of Photovoltaics

Scheme	Name of the	L	Т	Р	С	Semes	Contact
Version:	Subject:					ter:	hours
							per
	Solar Energy and						week:
2022-2027	Physics of					VIII	3+1
	Photovoltaics	3	1	0	4		Total
							Hours:
							45+15
Subject Code:	Applicable to		CIE	30	Examination	Duration	n: 3 hours
SBS PHY 03	Programs:	Evaluation		Marks			
802 DS 3104	Integrated B.Sc.	(Total			Prerequisite	of course	: There is
	M.Sc. (Physics)	(10tal Marks):		-0	no prerequisit		
		100	TEE	70	this course.		-
		100		Marks	expected to	o knov	w basic
					semiconductor	physics.	
Course	The course is intend	lad for student	a who l	novo intor	ast in alternate	oporqu ac	
Description	contributor to sustai						
Description	technology of solar	• •		-			
	understood for its ef						leed to be
Course	• The Course y	will be introdu	cing the	students	to all the aspects	s of PV te	chnology
Objectives					brication and ch		
o sjecu ves	different type	es of solar cell	s.				
	To know star	te of art in the	field of	solar cell	s materials and s	solar cells	
Course	On completion of th	is course, stud	ent will	learn:			
Outcomes:							
					rent solar energ	gy conve	ersion and
	-	ocesses, solar	-		distion case		
					diation as an end	0.	
				-	that are available ciples to selection		-
		installation to			-	n or all a	ppropriate
				*	y, how solar cells	s are man	ufactured
		lls are evaluate		cicculotty	, now solar com	s are man	unuturou,
			<i>.</i>				

	 What technologies are currently on the market, and how to expotential of existing and emerging solar cell technologies. To examine the potential & drawbacks of currently manufact as well as pre-commercial technologies. How to enhance sola and reduce cost, and the major hurdles-technological and e widespread adoption. 	tured technologies, ar cell performance
	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1.	Solar Radiation: origin, solar constant, spectral distribution of solar radiation, absorption of solar radiation in the atmosphere, global and diffused radiation, seasonal and daily variation of solar radiation, measurement of solar radiation, sun tracking systems, photo thermal conversion, solar energy collectors, collector efficiency and its dependence on various parameters.	15
2.	Solar energy: storage of solar energy, solar pond, solar water heater, solar distillation, solar cooker, solar green houses, solar dryers, absorption air conditioning. solar fuels: electrolysis of water, photoelectrochemical splitting of water.	15
3.	Fundamentals of solar cells: Photovoltaic effect, semiconductor properties, energy levels, basic equations, p-n junction its characteristics, fabrication steps, thermal equilibrium condition, depletion capacitance, junction breakdown, heterojunction. Silicon based solar cells: single crystal, polycrystalline and amorphous silicon solar cells.	15
4.	Device physics : Solar cell device structures, construction, output power, efficiency, fill factor and optimization for maximum power, surface structures for maximum light absorption, current voltage characteristics in dark and light, operating temperature vs conversion efficiency, charge carrier generation, recombination and other losses. Cadmium telluride solar cells, copper indium gallium selenide solar cells, organic solar cells, perovskite solar cells, Advanced concepts in photovoltaic research.	15

REFERENCE BOOKS

- 1. S P Sukhatme, Solar Energy: Principles of Thermal Collection and Storage, Tata McGraw Hill, 1996.
- 2. Solid State Electronic Devices, Ben. G. Streetman, S. K. Banerjee, PHI Leaning Pvt. Ltd, 2000.
- 3. D. Yogi Goswami, <u>Frank Kreith</u>, Jan F. Kreider, Principles of Solar Engineering, Taylor and Francis, 2000.
- 4. Jasprit Singh, Semiconductor Devices, Basic Principles, Wiley, 2001
- 5. Stephen J.Fonash, Solar Cell Device Physics, 2nd edition, Academic Press, 2003.
- 6. H P Garg, J Prakash, Solar energy fundamentals and applications, Tata McGraw Hill publishing Co. Ltd, 2006.

General Theory of Relativity

Scheme Version:	Name of the subject: General Theory of	L	Т	Р	C	Semester:	Contact Hours per
2023-28	Relativity					VIII	Week: 3+1
		3	1	0	4		Total Hours: 45+15
Subject	Applicable to	Evalu		30		ination Dura	ation: 3
Code: SBS PHY	Programs:	ation (Tatal	CIE	Marks 70	hours		
03 803	Integrated B.Sc.	(Total Mark	TEE	70 Marks		quisite: Clas odynamics,	sical
DS 3104	M.Sc. (Physics)	s: 100)	TEE	IVIAI KS		matical Phys	ics-I, II, III
Course	This course on Ger	neral The	ory of Rel	ativity cov	vers topi	cs of Specia	l Theory of
Descripti	Relativity, General	Theory of	f Relativity	and its app	plication	s.	
on							
Course	The objective of the	aourso is	to familia	ing studen	ta with d		ate of theory
Objective s	of gravitation.		to familiar	ize studen	ts with d	ifferent aspe	cts of theory
Objective	of gravitation. On completion of th • Understand	e course, the mathe	student wo	ould be able	e to	d the theory of	
Objective s Course	of gravitation. On completion of th • Understand and also be a	e course, the mathe able to	student wo matical rig	ould be able our that go	e to bes behin	d the theory of	
Objective s Course Outcome	of gravitation. On completion of th • Understand and also be a	the course, the mathe able to few applie	student wo matical rig cations of g	ould be abloour that go general the	e to bes behin	d the theory of	
Objective s Course Outcome	of gravitation. On completion of the Understand and also be a Understand	the course, the mathe able to few applic the Specia	student wo matical rig cations of g al theory of	buld be able our that go general the relativity	e to bes behin ory of re	d the theory of	
Objective s Course Outcome	of gravitation. On completion of the Understand and also be a Understand Understand	the course, the mathe able to few applic the Specia the origin	student wo matical rig cations of g al theory of	ould be able our that go general the relativity ional wave	e to bes behin ory of re	d the theory of	
Objective s Course Outcome	of gravitation. On completion of the Understand and also be a Understand Understand	the mathe able to few applie the Specia the origin COU	student wo matical rig cations of g al theory of of gravitat	buld be able our that go general the relativity ional wave LABUS	e to bes behin ory of re	d the theory of	of relativity Hours of
Objective s Course Outcome s	of gravitation. On completion of the Understand and also be a Understand Understand Understand	the course, the mathe able to few applie the Specia the origin COU Conte	student wo matical rig cations of g al theory of of gravitat RSE SYLI ent of Eac	ould be able our that go general the relativity ional wave LABUS h Unit	e to bes behin ory of re	d the theory of	of relativity
Objective s Course Outcome s Unit No.	of gravitation. On completion of the Understand and also be a Understand Understand Understand Historical Backgro	the course, the mathe able to few applie the Specia the origin COU Conte	student wo matical rig cations of g al theory of of gravitat RSE SYLI ent of Eac	ould be able our that go general the relativity ional wave LABUS h Unit	e to bes behin ory of re es	d the theory of lativity.	of relativity Hours of Each Unit
Objective s Course Outcome s	of gravitation. On completion of the Understand Understand Understand Understand Historical Backgro theory of relativity.	the course, the mathe able to few applie the Specia the origin COU Conte Dund : Re Prelude to	student wo matical rig cations of g al theory of of gravitat RSE SYLI ent of Each view of Net o General r	ould be able our that go general the relativity ional wave LABUS h Unit wtonian M elativity, h	e to bes behin ory of re es fechanics iistorical	d the theory of lativity.	of relativity Hours of
Objective s Course Outcome s Unit No.	of gravitation. On completion of the Understand and also be a Understand a Understand a Understand a Historical Backgrowtheory of relativity. developments, 4-Ve	the course, the mathe able to few applie the Specia the origin COU Conte Dund : Re Prelude to ectors and	student wo matical rig cations of g al theory of of gravitat RSE SYLI ent of Eac view of Ne o General r 4-tensors,	ould be able our that go general the relativity ional wave LABUS h Unit wtonian M elativity, h examples	e to bes behin ory of re es fechanics iistorical from phy	d the theory of lativity.	of relativity Hours of Each Unit
Objective s Course Outcome s Unit No.	of gravitation. On completion of the Understand is and also be a Understand is Understand is Historical Backgrowtheory of relativity. developments, 4-Vecore Tensors in GTR: P	the course, the mathe able to few applie the Specia the origin COU Conte Dund : Rep Prelude to ectors and crinciple o	student wo matical rig cations of g al theory of of gravitat RSE SYLI ent of Eacl view of Net o General r 4-tensors, f Equivale	ould be able our that go general the relativity ional wave LABUS h Unit wtonian M elativity, h examples f nce, Equat	e to bes behin ory of re es fechanics iistorical from phy ions of n	d the theory of lativity.	of relativity Hours of Each Unit
Objective s Course Outcome s Unit No.	of gravitation. On completion of the Understand and also be a Understand a Understand a Understand a Historical Backgrowtheory of relativity. developments, 4-Ve	the course, the mathe able to few applie the Specia the origin COU Conte Dund : Rep Prelude to ectors and crinciple of Tensor A	student wo matical rig cations of g al theory of of gravitat RSE SYLI ent of Each view of Net o General r 4-tensors, f Equivalen	ould be able our that go general the relativity ional wave LABUS h Unit wtonian M elativity, h examples f nce, Equati Riemannia	e to bes behin ory of re es fechanics istorical from phy ions of n in space,	d the theory of lativity.	of relativity Hours of Each Unit

3	Applications of GTR: Einstein Field Equations, Experimental tests of General Theory of Relativity, Scwartzchild Solution, Gravitational lensing	15
4	Gravitational Radiation: Gravitational waves: generation and detection, Energy, momentum and angular momentum in Gravitation	15
	Text Books	
1. S. Weinb	erg, Cosmology, Oxford University, 1st Ed., 2008.	
2. Ray D'Ir	verno, Introducing Einstein's General Relativity, Oxford University, 1st	Ed., 1992.
3. M. Berry	r, Principle of Cosmology and Gravitation, Taylor & Francis; 1st Ed., 198	89.
4. Tai L. Cl	now, Introduction to General theory of Relativity and Cosmology, Spring	ger, 1st Ed.,
2008.		
5. P.A.M. I	Dirac, General theory of Relativity, Wiley-Blackwell, 1st Ed., 1975.	
6. L.D. Lan	dau and E.M. Lifshitz, The Classical Theory of Fields, Publishere, Shrof	f, 2nd Ed.,
2010		

Accelerator Physics

Scheme Version:	Name of the subject: Accelerator Physics	L	T	Р	C	Semester:	Contact Hours per Week: 3+1
2023-28		3	1	0	4	VIII	Total Hours: 45+15
Subject Code: SBS PHY 03 804	Applicable to Programs: Integrated B.Sc.	Evaluatio n (Total	CIE	30 Marks	Exam hours	ination Dura	tion:3
DS 3104	M.Sc. (Physics)	(1000) Marks: 100)	TEE	70 Marks	Nucle	quisite of Co ar Physics, odynamics, Q nics	
Course Description	This course is intervarious particle ac	_	ose the st	tudents to	theoreti	cal design and	l usage of
Course Objectives	Get knTo und	derstand the b lowledge abo derstand the r rators and hig	ut differ nain fea	ent types tures of su	ipercond	erators lucting cyclot	ron, linear
Course Outcomes	Learn abo technical oGet knowl	d the beam o ut various the details of elec ledge about la	ptics & coretical ctrostatic atest acc	beam tran technique c accelerat elerator te	sport sy es to acco ors. echnolog		f cavities.
		COURSI	E SYLL	ABUS			
Unit No.		Content	t of Eac	ch Unit			Hours of Each Unit

1	Charged Particle Dynamics: Particle motion in electric and magnetic fields, Beam transport system, Beam pulsing and bunching techniques, microbeams, Particle and ion sources, secondary beams, Measurement of beam parameters.	15
2	Electrostatic and Heavy Ion Accelerators: Van de Graaff voltage generator, Cockcroft-Walton voltage generator, insulating column, voltage measurement, Acceleration of heavy ions, Tandem electrostatic accelerator, Production of heavy negative ions, Pelletron and Tandetron, Cluster beams.	15
3	Radiofrequency Accelerators: Linear accelerators - Resonance acceleration and phase stability, electron and proton Linacs, Superconducting Heavy Ion Linear Accelerators. Circular accelerators- Cyclotron, Frequency Modulated Synchrocyclotron, AVF Cyclotron, Alternating-gradient accelerators.	15
4	Synchrotron Radiation Sources: Electromagnetic radiation from relativistic electron beams, Electron synchrotron, Characteristics of synchrotron radiation. Production of Radioactive ion beams, Polarized beams, Proton synchrotron, Colliding accelerators.	15
	TEXT BOOKS	
2. Ed. J. Cern 3. H.J. Wiedn	gston and J.P. Blewel, Particle Accelerators, McGraw-Hill Book Press, y, Nuclear Spectroscopy and Reactions Part-A, Academic Press, 1974. nan, Particle Accelerator Physics, Vol I and II, Springer Verlag, 1998. Accelerator Physics, World Scientific, Singapore, 2004	1962.

Characterization Techniques for Materials

Scheme Version: 2023-28	Name of the subject: Characterizatio n Techniques for Materials	L 3	T 1	Р 0	C 4	Semester: VIII	Contact Hours per Week: 3+1 Total Hours: 45+15
Subject Code: SBS PHY 03 805 DS 3104	Applicable to Programs: Integrated B.Sc. M.Sc. (Physics)	Evalu ation (Total Mark s: 100)	CIE TEE	30 Marks 70 Marks	3 hour	ination Dura	
Course Description Course Objective	• Help the	of ma cerization ing metal le import erization. uce the n students t	terials and techniques s, ceramics, ant spectrosc naterials cha to understan	character used for c polymers, copic, mic racterizati d the instr	ization hemical compos roscopio on techn umentat	techniques. and structura sites, and sem c and thermal niques to the s ion aspects	The course l analysis of iconductors. methods for
Course Outcomes	 To provid On completion o To determ and stress To choor microstru To use vibrationa gap, elem To apply 	le hands f the cour nine crys s ose an cture of r e appr al/electro hental cor thermal a	rse, student v tal structure appropriate materials at l opriate sp nic transitio acentration, o	e of the cl would be a of specim microsco high resolu- bectroscop ns to estin etc. niques to o	haracter able: en and e opy teo ation ic teo nate par determin	rpretation ization technic estimate its cr chniques to chnique to cameters like one thermal sta	ystallite size investigate measure energy band
Unit No.	· · · · · · · · ·		RSE SYLL				Hours of Each Unit

1	Structure analysis: X-ray diffraction. Diffraction under non-ideal conditions. Atomic scattering and Geometrical structure factors. Factors influencing the intensities of diffracted beams. Phase identification, indexing and lattice parameter determination, Powder X-ray diffractometer. Applications of XRD in bulk and nano-materials.	15
2	Microscopy techniques: Introduction to Microscopes, Optical microscopy, Transmission Electron Microscopy (TEM); Basic Electron scattering, Concepts of resolution, TEM instruments, Various imaging modes, Analysis of micrographs, Electron Energy Loss Spectroscopy, Scanning Electron Microscopy (SEM), Scanning Probe Microscopy (AFM and STM)	15
3	Spectrophotometric analysis of materials: UV-VIS spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron Spectroscopy (XPS).	15
4	 Thermal analysis techniques: Differential thermal analysis (DTA), Differential Scanning Calorimetry (DSC), Thermo-gravimetric analysis (TGA) Electrical characterization techniques: Electrical resistivity in bulk and thin films, Hall effect, Magnetoresistance 	15
	TEXT BOOKS	
 2. 3. 4. 5. 6. 7. 	 Wendlandt, W.W., Thermal Analysis, John Wiley & Sons, 1986. Wachtman, J.B., Kalman, Z.H., Characterization of Materials, Butterworth He 1993. Murphy, Douglas B, Fundamentals of Light Microscopy and Electronic Imag Liss, Inc. USA, 2000. Cullity, B.D., and Stock, R.S., "Elements of X-Ray Diffraction", Prentice-Hal B. Raj, T. Jayakumar, M. Thavasimuthu, Practical Non-Destructive Testin Narosa Publishing House, 2002. D. A. Skoog, F.J. Holler, S. R. Crouch, Instrumental Analysis, Cengage Learr Li Lin, Ashok Kumar, Materials Characterization Techniques Sam Zhang; 2008. Y. Leng, Materials Characterisation: Introduction to Microscopic and Spec Methods, John Wiley & Sons (Asia), 2008. 	ing, Wiley- 1, 2001. g, 2nd ed., ning, 2007. CRC Press,
9.	J. C. Vickerman, I. Gilmore, Surface Analysis: The Principal Techniques, 2 Wiley & Sons, Inc.2009.	nd ed., John

Cosmology

Scheme Version: 2023-28	Name of the subject: Cosmology	L	Т	Р	C	Semester: IX	Contact Hours per Week:
2023-28							3+1
		3	1	0	4		Total Hours: 45+15
Subject Code:	Applicable to Programs:	Evaluati on	CIE	30 Marks	Exam hours	ination Dura	ation: 3
SBS PHY 03 901 DS 3104	Integrated B.Sc. M.Sc. (Physics)	(Total Marks: 100)	TEE	70 Marks		quisite: Intro nomy and As	
Course Descriptio n	Cosmology is a bra universe, from the l		•				ntion of the
Course Objectives	The aim of this cou	rse is to inti	roduce the	e model of	f the uni	verse on larg	e scales
Course Outcomes	On completion of the Understand Apply the constant Understand Explain the	the concept oncepts of C the model c	s of STR GTR to co of expand	and GTR smology ing univer	se	l history.	
		COURS	SE SYLL	ABUS			
Unit No.			t of Each				Hours of Each Unit
1	Principles of Relat interval and Lorent relativity (GR) - eq	tz metric- f	our vecto	ors - Intro	duction	to general	15
2	Gravitation as a Gravitational redsh light bending and ergosphere, hydrost	ift and clocl gravitation	k correcti al lensing	ons - orbit g - conce	s in stro pt of ho	ng gravity, prizon and	15
3	Cosmological Mod isotropy – distance redshift - Cosmolog metric - Observabl	ladder –Ne ical Princip	ewtonian le - Hubb	cosmolog le's law -]	y - expa Robertso	ansion and on-Walker	15

	distances - Horizon distance- Dynamics of Friedman- Robertson-	
	Walker models: Friedmann equations for sources with p=wu and w	
	=-1, 0, 1/3, discussion of closed, open and flat Universes.	
	Physical Cosmology and Early Universe: Thermal History of the	
	Universe - distribution functions in the early Universe - relativistic	
	and nonrelativistic limits - Decoupling of neutrinos and the relic	
	neutrino background - Nucleosynthesis - Decoupling of matter and	
4	radiation - Cosmic microwave background radiation (CMB)-	15
	Anisotropies in CMB - Inflation - Origin and growth of Density	
	Perturbations - Formation of galaxies and large scale structures -	
	Accelerating universe and type-Ia supernovae - The Intergalactic	
	medium and reionization.	
	Text Books	
1. Cosmolog	gical Physics, Cambridge University Press, J. A. Peacock	
2. An Introd	luction to Relativity, J. V. Narlikar, Cambridge University Press, 2010	
3. Theoretic	al Astrophysics, Volume III: Galaxies and Cosmology,	
T. Padmana	bhan, Cambridge University Press, 2002 (for lectures on Cosmology)	
4. Classical	Theory of Fields, Vol. 2, L. D. Landau and E. M. Lifshitz, Oxford : Perg	gamon Press,
1994 (For m	nore material on General Relativity).	
5. Introduct	ion to Cosmology, J. V. Narlikar, Cambridge University Press, 1993 (Fo	r the lectures
on Cosmolo	ngy).	
6. First cour	se in general relativity, B. F. Schutz, Cambridge university press, 1985 (For material
on General I	Relativity).	
7. Structure	Formation in the Universe. T. Padmanabhan, Cambridge University Pre	ss, 1995 (for
material on	Cosmology and Structure formation).	

Plasma Physics

Scheme Version: 2023-28	Name of the subject: Plasma Physics	L 3	T 1	Р 0	C 4	Semester: IX	Contact Hours per Week: 3+1 Total Hours: 45+15
Subject Code: SBS PHY 03 902 DS 3104	Applicable to Programs: Integrated B.Sc. M.Sc.	Evaluatio n (Total Marks:	CIE	30 Marks	Exami hours	nation Dura	tion: 3
	(Physics)	100)	TEE	70 Marks	Mather	uisite of Con natical Physi um Mechanic	cs and
Course Description	Students will b inhomogeneous	s field, produ	ction of	plasma a	nd usage	of plasma.	article in an
Course Objectives	• To a		ts about	plasma ci	reation in		in fusion
Course Outcomes	Idea belhow to a		method netic cor ma in th ion is he	to study th finement e laborato lpful to m	he charge	e particle mo	-
Unit No.		Conter	nt of Ea	ch Unit			Hours of Each Unit
1	Introduction : Definition Definition	Plasma state,	plasma	paramete	rs, applio	cations of	15

	electric and magnetic fields, homogenous electric and magnetic fields, spatially and time varying electric and magnetic fields,	
2	The Boltzmann Equation: Simplified magneto-hydrodynamic equations - Electron plasma oscillations Debye shielding phenomenon and criteria for plasma, motion of charged particles in electromagnetic field, Electric field drift, parallel acceleration, curvature drift, adiabatic invariants; fundamental equations of magneto-hydrodynamics(MHD), magnetic confinement.	15
3	 Production of Plasma in laboratory: Physics of glow discharge, electron emission, ionization breakdown of gasses, Paschen's law and different regimes of E/ρ in a discharge. Plasma diagnostic: Probes, energy analysers, magnetic probes and optical diagnostics, preliminary concepts. 	15
4	Fusion Reactor : Potential of fusion energy, controlled thermonuclear reactions, fusion reactions, fusion cross-sections, fusion power generation, energy balance for fusion systems, ignition criterion, gain factor, plasma heating, ohmic heating, neutral beam injection, radio frequency heating, inertial confinement fusion, tokamaks, stability, operating limits and transport.	15
	TEXT BOOKS	

4. Choudhuri, A.R., The Physics of Fluids and Plasmas, Cambridge University Press, 1998

Experimental Techniques in Nuclear and Particle Physics

	Name of the	L	Т	Р	С	Semester:	Contact	
Version	subject:						Hours	
:							per	
	Experimental						Week:	
	Techniques in						3+1	
2023-28	Nuclear and Particle					IX	Total	
	Physics	3	1	0	4		Hours:	
		3	1	0	4		45+15	
Subject	Applicable to	Evalu		30	Exam	ination Dura	tion:	
Code:	Programs:	ation	CIE	Marks	2 h ave			
SBS	Integrated B.Sc.	(T-4-1	CIE		5 nour	hours		
PHY 03	M.Sc. (Physics)	(Total Mark		70	Prere	quisite of Co	urse:	
903 DS				Marks		s of Nuclear Pl		
3104		s: 100)	TEE		Partic	le Physics		
Course	This course is intended	d to famil	iarize the N	A Sc. stude	nts to th	<u>experimenta</u>	l techniques	
Descrip	used in the fields of m							
tion			-				ii teeninques	
		owed by g	adescriptio	n of on-det	ector an	d off_detector	electronics	
2011	will be introduced for	owed by a	a descriptio	n of on-det	ector an	d off-detector	electronics.	
Course		-	_			d off-detector iques used in t		
	• Get knowl	edge abor	_	experiment				
Course	Get knowl nuclear ph	edge abor ysics and	ut various e particle ph	experimentary sics.	al techni		the fields of	
Course Objecti	Get knowl nuclear ph	edge abor ysics and niliar with	ut various e particle ph h various d	experimenta lysics. etector syst	al techni tems and	iques used in t	the fields of	
Course Objecti	 Get knowl nuclear ph To get fan 	edge abor ysics and niliar with	ut various e particle ph h various d	experiment lysics. etector syst	al techni tems and ble to:	iques used in t d related electr	the fields of ronics.	
Course Objecti	 Get knowl nuclear ph To get fan 	edge abor ysics and niliar with	ut various e particle ph h various d	experiment lysics. etector syst	al techni tems and ble to:	iques used in t d related electr	the fields of ronics.	
Course Objecti ves	 Get knowl nuclear ph To get fan After completion of th Get knowledge 	edge abor ysics and niliar with nis course e about di	ut various e particle ph h various d e, students v ifferent typ	experiment lysics. etector syst would be al es of radiat	al techni tems and ble to: ions & t	iques used in t d related electr heir interactio	the fields of ronics.	
Course Objecti ves Course	 Get knowl nuclear ph To get fan After completion of th Get knowledge matter. 	edge abor ysics and niliar with nis course e about di e radiatio	ut various e particle ph h various d e, students v ifferent typ n exposure	experimenta sysics. etector system would be all es of radiat and its effe	al techni tems and ble to: ions & t	iques used in t d related electr heir interactio	the fields of ronics.	
Course Objecti ves Course Outcom	 Get knowl nuclear ph To get fan After completion of th Get knowledge matter. Understand the Learn about he Get knowledge 	edge abou ysics and niliar with nis course e about di e radiatio ow to deta e about th	ut various e particle ph h various d e, students v ifferent typ n exposure ect radiation he various e	experiment aysics. etector systent would be all es of radiat and its effent ns.	al techni tems and ble to: ions & t ects on t	iques used in t d related electr heir interaction he biological	the fields of ronics. on with system.	
Course Objecti ves Course Outcom	 Get knowl nuclear ph To get fan After completion of th Get knowledge matter. Understand the Learn about he Get knowledge and pulse sign 	edge abor ysics and niliar with nis course e about di e radiatio ow to dete e about th al process	ut various e particle ph h various d e, students v ifferent typ n exposure ect radiation he various e sing.	experiment aysics. etector systent would be all es of radiat and its effens. lectronic co	al techni tems and ble to: ions & t ects on t ompone	iques used in t d related electr heir interaction he biological nts of radiatio	the fields of ronics. On with system. on detectors	
Course Objecti ves Course Outcom	 Get knowl nuclear ph To get fan After completion of th Get knowledge matter. Understand the Learn about he Get knowledge and pulse sign Understand Le 	edge abor ysics and niliar with nis course e about di e radiatio ow to dete e about th al process	ut various e particle ph h various d e, students v ifferent typ n exposure ect radiation he various e sing.	experiment aysics. etector systent would be all es of radiat and its effens. lectronic co	al techni tems and ble to: ions & t ects on t ompone	iques used in t d related electr heir interaction he biological nts of radiatio	the fields of ronics. On with system. on detectors	
Course Objecti ves Course Outcom	 Get knowl nuclear ph To get fan After completion of th Get knowledge matter. Understand the Learn about he Get knowledge and pulse sign 	edge abou ysics and niliar with nis course e about di e radiatio ow to dete e about th al process earn abou	ut various e particle ph h various d e, students v ifferent typ n exposure ect radiation t various e sing.	experiment aysics. etector systent would be all es of radiat and its effent ns. lectronic content existing det	al techni tems and ble to: ions & t ects on t ompone	iques used in t d related electr heir interaction he biological nts of radiatio	the fields of ronics. On with system. on detectors	
Course Objecti ves Course Outcom	 Get knowl nuclear ph To get fan After completion of th Get knowledge matter. Understand the Learn about he Get knowledge and pulse sign Understand Le 	edge abou ysics and niliar with nis course e about di e radiatio ow to dete e about th al process earn abou	ut various e particle ph h various d e, students v ifferent typ n exposure ect radiation he various e sing.	experiment aysics. etector systent would be all es of radiat and its effent ns. lectronic content existing det	al techni tems and ble to: ions & t ects on t ompone	iques used in t d related electr heir interaction he biological nts of radiatio	the fields of ronics. On with system. on detectors	
Course Objecti ves Course Outcom	 Get knowl nuclear ph To get fan After completion of th Get knowledge matter. Understand the Learn about he Get knowledge and pulse sign Understand Le 	edge abor ysics and niliar with nis course e about di e radiatio ow to deta a about th al process earn abou	ut various e particle ph h various d e, students v ifferent typ n exposure ect radiation t various e sing.	experiment aysics. etector systent would be all es of radiat and its effent and its effent lectronic controls existing det LABUS	al techni tems and ble to: ions & t ects on t ompone	iques used in t d related electr heir interaction he biological nts of radiatio	the fields of ronics. On with system. on detectors	

1	Radiation interactions: Nuclear processes in radioactive sources: types of radiations & radiation sources; Interaction of gamma-rays, electrons, heavy charged particles, neutrons, neutrinos and other particles with matter. Radiation protection, Biological effects of radiation, radiation monitoring.	15
2	Detection of radiations: General properties of Radiation detectors, energy resolution, detection efficiency and dead time. Gas-filled detectors: Ionization chamber, Proportional counters, position-sensitive proportional counters, Multiwire proportional chambers, Drift chamber, Time projection chamber. Scintillation detector, Phoswich detectors, Cherenkov detector. Semiconductor detectors. Detection of fast and slow neutrons - nuclear reactions for neutron detection. General Background and detector shielding.	15
3	Detector electronics: Electronics for pulse signal processing, CR-(RC) ⁿ and delay-line pulse shaping, pole-zero cancellation, baseline shift and restoration, preamplifiers, overload recovery and pileup, Linear amplifiers, single-channel analyser, analog-to-digital converters, multichannel analyzer. Basic considerations in time measurements; Walk and jitter, Time pickoff methods, time-to-amplitude converters, Systems for fast timing, fast-slow coincidence, and particle identification, NIM and CAMAC instrumentation standards and data acquisition system.	15
4	Experimental Facilities: Detector systems for heavy-ion reactions: Large neutron detector array, gamma and charge particle detector arrays, electron spectrometer, heavy-ion reaction analysers, nuclear lifetime measurements (DSAM and RDM techniques), production of radioactive ion beams. Detector systems for high energy experiments: basics of Collider physics, Modern Hybrid experiments- CMS and ALICE.	15
H 2. K 3. Ri Pr 4. G	TEXT BOOKS 7.R. Leo, Techniques for Nuclear and Particle Physics Experiments, Spr eidelberg, 2 nd Edition, 1994. onrad Kleinknecht, Detectors for particle radiation, Cambridge University ichard Fernow, Introduction to Experimental Particle Physics, Cambridg ress, 2001. lenn F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, 010.	Press, 1999. Je University

Reactor Physics

Scheme Version: 2023-28	Name of the subject: Reactor Physics	L 4	Т 0	P 0	C 4	Semester: IX	Contact Hours per Week: 3+1 Total Hours: 45 + 15
Subject Code: SBS PHY 03 904 DS 3104	Applicable to Programs: Integrated B.Sc. M.Sc. (Physics)	Evalu ation (Total Marks :100)	CIE TEE	30 Marks 70 Marks	3 hour		ation: ourse: None
Course Description	This course is intended to impart primary but wide theoretical knowledge about nuclear reactors and related topics.						
Course Objectives Course Outcomes	 To understand the theoretical and experimental knowledge about nuclear reactors. To know about the basic designs of nuclear reactors. To understand the need of nuclear fuel and waste management. After completion of this course, students would be able to: Understand the nuclear fission reactions. Learn about neutron sources and moderators. Get knowledge about working of nuclear reactors. Get knowledge about different types of power reactors Learn how to manage the nuclear fuel and waste. 						
		COU	RSE SYLI	LABUS			
Unit No.		Conten	t of Each	Unit		Но	urs of Each Unit
1	Nuclear Reactions: Characteristics of atomic nucleus, Binding energy, Nuclear fission, Cross section, Interaction of neutrons with nuclei. neutrons neutrons					,	15

	Number of the sector of the sector is a Figure of the sector of the sect				
2	Neutron moderation: Inelastic scattering, Elastic collisions, Moderating ratio, Slowing down Density, Resonance escape, Moderators, Neutron sources, Prompt neutrons, Fast fission, Fission energy, Thermal utilization, Fission products, Chain reaction, Multiplication factor, Leakage of neutrons, Critical size, Diffusion and slowing down theory, Homogenous and heterogeneous reactors.	15			
3	Nuclear Reactors: Fuel materials, Moderator materials, Cladding materials, Coolant materials and control materials, Control requirement calculations, Means of control, Reactor kinematics: Neutron lifetime, Generation time, Point kinetic equation and solution of the equations for step input reactivity.	15			
4	Types of Power reactors & Fuel and waste management: Boiling water reactors, Pressurized water reactors, Pressurized heavy water reactors, Light water cooled graphite moderated reactors, Gas cooled reactors, Advanced gas cooled reactors, High temperature gas cooled reactors and liquid metal cooled reactors and Fast breeder reactors, Fuel management schemes, Fuel composition, Fuel cycle cost and waste management.	15			
Laboratory Assignments: Visits to fission reactor sites and related case studies for generation of nuclear energy.					
TEXT BOOKS					
1. Lamarshs, J.R., Introduction to Nuclear Reactor Theory, Addison-Wesley Publishing Co.,					

- 1966.
 Glasstons, S. and Sesonske, A., Nuclear reactor Engineer, CBS Publishers & Distributors,
- 1986.

Advanced Carbon Materials

Scheme	Name of the	L	Т	Р	C	Semester			
Version:	subject: Advanced					IX	Hours		
2023-28	Carbon						per Week:		
2023-20	Materials						3+1		
	Wraterrais						Total		
		3	1	0	4		Hours:		
		5	1	0	-		45+15		
Subject	Applicable to	Evalu		30	Exam	ination Du	iration: 3		
Code: SBS	S Programs:	ation	CIE	Marks	hours				
PHY 03 90)5 Integrated	(Total		70	Prere	quisite of (Course: None		
DS 3104	B.Sc. M.Sc.	Mark	TEE	Marks					
	(Physics)	s:							
		100)							
Course	This course ain	ns to intr	oduce stude	ents to the	e advan	ced carbor	n material that		
Description	on includes grapher	ne, fullere	nes, hierarcl	hical carbo	on, and C	CNTs are re	eferred to as the		
	strength of rev	strength of revolution and advancement in the era of material science and					al science and		
	technology. In general, the 20th century corresponds to plastic,			while the 21st					
	century will be n	amed as "	Century of	Graphene"	'owing	to its excep	tional physical		
	properties.								
Course	On completion of	of the cour	rse, student	would be a	able:				
Objectiv	e • To under	stand var	ious propert	ies of Graj	phene, C	CNTs and F	Fullerenes		
Course	On completion of	of the cour	rse, student	would be a	able:				
Outcome	• To under	stand the	basic prope	rties of car	bon				
	• To under	• To understand the various properties and applications of graphene							
	• To under	• To understand the various properties and applications of CNT							
	• To under	stand the	various pro	perties and	l applica	tions of fu	llerenes		
		COU	RSE SYLI	ABUS					
TI		Cent	4 of E - 1	F T : 4			Hours of		
Unit No.		Conter	nt of Each	Unit			Each Unit		
	Introduction: Carbo	on atomic	structure ar	nd hybridiz	zation, c	arbon on	15		
1		Earth and in outer space, carbon in technology and economy,							
	carbon isotopes: class								
	allotropic form into another, phase diagram of carbon, new carbon								
	structures: discovery of C ₆₀ , Graphene and Nanotubes								

2	Graphene: Structure of graphene; Preparation of graphene – synthesis of graphene by various physical and chemical methods and Purification; Electronic Properties – Band Structure of Graphene – Mobility and Density of Carriers - Quantum Hall Effect – Characterization of graphene: Raman Spectroscopy, Infrared Spectroscopy, Absorption and Photoluminescence Spectroscopy, Atomic Force Microscopy, Application of graphene	15				
3	Carbon Nanotubes:The Structure of Carbon Nanotubes- Nomenclature, Structure of Single-Walled Carbon Nanotubes and Structure of Multiwalled Carbon Nanotubes; Synthesis of CNT by various physical and chemical methods and Purification, Characterization of Carbon Nanotubes: Raman and Infrared Spectroscopy of Carbon Nanotubes, Absorption and Emission Spectroscopy of Carbon Nanotubes, ESR-Spectroscopic Properties of Carbon Nanotubes. Application of CNTs	15				
4	 Fullerenes: Structure and Bonding- Nomenclature, The Structure of C60, Structure of Higher Fullerenes - Growth Mechanisms; Production and Purification- Fullerene Preparation by Pyrolysis of Hydrocarbons, Partial Combustion of Hydrocarbons, Arc Discharge Methods, Production by Resistive Heating, Rational Syntheses; Physical Properties-, Spectroscopic Properties, Thermodynamic Properties; Chemical Properties- Hydrogenation and Halogenation, Nucleophilic Addition to Fullerenes. Application of Fullerenes 	15				
	TEXT BOOKS					
1.	M.S. Dresselhaus, G. Dresselhaus and P.C. Eklund, Science of Fullerenes a Nanotubes, Elsevier, 1996.	nd Carbon				
2.	Yury Gogotsi, Carbon Nanomaterials, Taylor and Francis, 2006.					
	Francois Leonard, The Physics of Carbon Nanotube Devices, Elsevier, 200	8.				
4.						
5.	D.R. Askeland, P.P. Phule, W.J. Wright, The Science and Engineering of Med., Cengage Learning, 2010.	laterials, 6th				
6.	emergent applications, Elsevier, 2013.					
7.	T. Pradeep, NANO: The Essentials- Understanding Nanoscience and Nanot McGraw Hill Education, 2017.	echnology,				
-	Deborah D L Chung, Carbon Materials: Science and Applications, World S	a: 2010				

GE courses (for Semester VII onwards)

Indian Knowledge System*

Scheme Version: 2023-28		Name of the subject: Indian Knowledge System	L	T	P	С	Semester: VII/VII	Hours
			3	1	0	4		Total Hours: 45+15
Subject		Applicable to	Evalu		30	Exam	ination Du	ration: 3
Code:		Programs:	ation	CIE	Marks	hours		
SBS 03 07 GE 3104	7	Integrated B.Sc. M.Sc.	(Total Mark s: 100)	TE E	70 Marks	Prere	quisite of C	Course: None
* The cours	se wi	ll be taught by the	faculty men	ibers of Sc	hool of B	Basic Sci	iences.	
Course Objectiv			se will prov on of the gr					now the
Course Outcom		After completing Indian scientists a knowledge and n	and their co ation buildi	ntributions	in the de			
Unit No.			Content o	of Each U	nit			Hours of Each Unit
1	Ran	Physics : Bibliography of Scientists in the field of Physics, basics of Raman Spectroscopy and Raman Effect, Bhabha Scattering, Indian						15
rocket technology, Wireless transmission of electromagnetic waves, Strong-weak coupling duality, Indian Satellite Technology, Indian Missile Man, Bose-Einstein Condensation, fabrication of ultralight aircraft and sailboats. Chandersekhar limit, Thermal ionization of elements, Saha equation, Pokhran atomic bomb, Quantum black holes, ISRO satellite, fabric and composition of Universe								
2	Chemical Sciences: Bibliography of Scientists in the field of Chemical							15

	and their applications, Shanti Swaroop Bhatnagar - "Father of						
	Research Laboratories" in India, contribution in industrial research						
	and role in establishments of CSIR, Founder of theIndia's first						
	pharmaceutical company, research on pharmace uticals including						
	nitrites, investigation of radio and microwave optics, controlled						
	synthesis of proteins, total synthesis of a functional gene outside a						
	living organism, Debashis Mukherjee and Theoretical spectroscopy,						
	many-body methods for electronic structures, Crystal Engineering,						
	weak Hydrogen bonds and co-crystals, Determination of the atomic						
	structure of 30S ribosomal subunit, modern Indian Coordination						
	Chemistry, structures and reactivity of transition-element compounds						
	Mathematics:Bibliography and contribution of Indian						
	Mathematicians: Aryabhatta, Brahmagupta, Bhaskara I, Bhaskara II,						
	Srinivasa Ramanujan, Shakuntala Devi, Manjul Bhargava, Akshay						
3	Venkatesh.	15					
	Statistics: Bibliography and contribution of Indian Statisticians:C. R. Bao Presente Chandra Mahalanahis, Dahabrata Pasu, K. C. Sraadharan						
	Rao, Prasanta Chandra Mahalanobis, Debabrata Basu, K. C. Sreedharan Pillai, Pranab K. Sen, Raj Chandra Bose.						
	Geography: Contribution of Varahamihira, Brahmagupta,						
	Bhaskaracharya, Aryabhata and Ancient Indian Literature to the						
	development of scientific knowledge in the field of geography.						
4	Computer Science: Knowledge discovery and knowledge	15					
	management in ancient India, protection of traditional knowledge,						
	need and significance for protecting traditional knowledge, Systems of						
	traditional knowledge protection, Traditional knowledge, and intellectual property, patents and traditional knowledge, strategies to						
	increase protection of traditional knowledge. TEXT BOOKS						
1 0							
	Science India, ScientificMagazines by Vijnana Bharati. For details visit: https://scienceindiamag.in.						
		nio in					
	Everyman's Science by ISCA. For details visit: http://www.sciencecongress						
	3. Evolution of Geographical Thought, Husain, M., 2012, Rawat Publications.						
	Knowledge Traditions and Practices of India (a text book) 2012, Kapil Kap MichelDanino.	001,					
	E-resources: https://www.youtube.com/watch?v=LZP1StpYEPM,						
	http://nptel.ac.in/courses/121106003.						
	Probability and Statistical Inference, Mukhopadhyay, N., 2000. Marcel Del	vker Inc. New					
	York.	ANDI, IIIC. INCW					
· · · ·							

Numerical Methods and Programming

Scheme Version: 2023-28	Name of the subject: Numerical Methods and Programming	L	Т	Р	С	Semester VII/VIII	Hours per Week: 2+1+2
		2	1	2	4		Total Hours: 30+15+30
Subject Code: SBS PHY 03 702	Applicable to Programs: Integrated	Evaluation (Total Marks: 100)	CIE	30 Mark s	Exam hours	ination Du	ration: 3
GE 2124	B.Sc. M.Sc		TEE	70 Mark s		quisite of C With Mathe	
Course Description	This course teaches the students to solve basic problems of mathematics and sciences with the help of an approximation and a computer.					thematics and	
Course Objectives	 To make the student 1) Understand basics of a Programming Language 2) Aware of various Numerical methods. 3) Able to create hypothetical data sets for Physical Systems. 4) familiar with random sampling of large data sets. 						
Course Outcomes	 Students will be able to learn : to write a computer program in C. the solutions of linear and non-linear equations along with solutions of simultaneous linear equations. Numerical differentiation and integration. Monte Carlo methods and its application to problems of physical world. 						
T T 8 / N T	1	COURSE S					
Unit No.		Content of I	Lach U	nít		H	ours of Each Unit
1	C/C++: Flow charts, Algorithms, Input and output statements, Control 18 statements, Arrays, Repetitive and logical structures, Subroutines and functions.						
2		Subroutines and functions.19Numerical Methods of Analysis:19Roots of a function, Solution of simulteneous linear					

		equation, Interpolation and curve fitting, Numerical					
		differentiation and integration, Solution of ordinary					
		.					
		differential equations					
		Simulations I:					
	3	Generation of random numbers, Statistical tests of	19				
		randomness,, Monte-Carlo evaluation of integrals and Error					
		Analysis.					
		Simulations II :					
	4	Inhomogeneous distribution and Importance of datasampling,	19				
		Metropolis algorithm, Brownian motion as random walk					
		problem and its Monte-Carlo simulation.					
		TEXT BOOKS					
1.		ong, Computational Methods in Physics and Engineering, W	orld Scientific,				
	Singapore, 2	2 nd Edition, 1997.					
2.	C. F. Geral	d, Applied Numerical Analysis, Pearson/Addison Wesley, UK	K, 7 th Edition,				
	2003.						
3.	Teukolsky,	Vetterling and Flannery, Numerical Recipes: The Art of Sc	cientific				
	Computing, Cambridge University Press, 3 rd Edition 2007.						
4.	4. Landau and Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge						
	University Press, 3 rd Edition, 2013.						
5.							
	Edition, 2015.						
6.	6. V. Rajaraman, Computer Programming in FORTRAN 90/95, Prentice Hall of India, New						
		lition, 2015.					
	,						

Physics of Digital Photography

Scheme Version: 2023-28	Name of the subject: Physics of Digital Photogra phy	L 3	T	P	C 4	Semester: VII/VIII	Contact Hours per Week: 3+1 Total Hours:
Subject Code:	Applicable	Evaluatio n		30		ination Dura	45+15 tion: 3
SBS PHY 03 703 GE 3104	to Programs: Integrated B.Sc. M.Sc.	(Total Marks:	C I E	Marks			
		100)	T E E	70 Marks		quisite of Cou with Physics	ırse:
Course Description	The aim of this imaging chain.' and photograph	The course is in				-	• •
Course Objective	 To become proficient at the technical aspect of photographing with a digital camera. To develop and practice skills using digital photography tools and the Internet including emailing and posting to a web site To develop the habit of looking closely at the visible world around you 						
		to represent it i you are seeing				•	h. – To look

Cour Outco		
	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1	Fundamental optical formulae: Image formation: Refraction, Gaussian optics, Lens refractive power, Magnification, Focal length, Lens focusing movement Field of view: Entrance and exit pupils, Chief and marginal rays, Angular field of view, Field of view area, Focal-length multiplier, Depth of field: Circle of confusion, Depth of field equations, Hyperfocal distance, Focus and recompose limits, distortion, Exposure: Photometry, Flux emitted into a cone, Relative aperture, f-number, Working f-number, f-stop, Natural vignetting, Photometric exposure, Exposure value, f-number for aplanatic lenses	15
2	History of photography: Pinhole Camera, Camera Obscura, Normal Human Eye and Process of Seeing-Human eye and camera, Camera principles: Compact cameras and SLR's - Working of SLR camera- Different image sensors-CCD and CMOS. Angle of view- Different types of lenses- normal lens, wide angle lens, fish eye lens, prime lens, telephoto lens. Depth of Field-Shallow depth of field, large depth of field, Depth of focus - circles of confusion	15

	Exposure strategy :	
3	Digital output, Sensor response, Colour, Digital output levels, Dynamic range, Tonal range, Tone reproduction, Gamma, Tonecurves, Histograms, verage photometry, Reflected-light metering, Average scene luminance, Exposure index, ISO speed, Standard output sensitivity, Exposure modes: Metering modes, Exposure compensation, Aperture priority (A or Av), Shutter priority (S or Tv), Program mode (P), Manual mode (M)	15
	Image quality :	
4	Colour temperature, White balance, Color space, Lens MTF, sharpness, Signal-to-noise ratio, Different Image capturing formats: RAW, TIFF, JPEG, Storage Devices- SD card CF card, Principles of Composition: Perspective - Space	15
	(Negative and Positive), Directional lines-Golden Section and Rule of the Third, Colour	
	Theory	
	TEXT BOOKS	
1.	Steven Heller, A History of Photography: From 1839 to the Present	t
	Tom Ang, Photography: The Definitive Visual History	
3.	Todd Gustavson and George Eastman House , Camera: A History from Daguerreotype to Digital by Understanding Exposure, Fourth I PETERSON.	010
	DK, Digital Photography Complete Course Hardcover	
5.	Fil Hunter, Steven Biver and Paul Fuqua , Light Science & Magic Introduction toPhotographic Lighting by Understanding Color in Ph by Bryan Peterson.	
6.	Andy Rowland, Physics of Digital Photography by (IOP Publishing	g).

Modern Optics

Scheme Version : 2023-28	Name of the subject: Modern Optics	L 3	T 1	P 0	C 4	Semester: VII/VIII	Contact Hours per Week: 3+1 Total Hours: 45+15
Subject Code: SBS PHY 03 801 GEC 3104	Applicable to Programs: Integrated B.Sc. M.Sc.	Evalu ation (Total Marks : 100)	CIE TEE	30 Marks 70 Marks	hours Prere	ination Duration: 3 quisite of Course: with Physics	
Course Descriptio n Course Objective	 The course has focus on the Geometrical and wave optics, thin films, Holography,optical fiber, liquid crystals, LED and Photonic band gap crystals. 1. To understand the fundamentals of optics. 2. To impart knowledge about different physical phenomena. 						
s Course Outcome s	 2. To impart knowledge about different physical phenomena. 3. To update the students with the latest technologies. After completion of this course, students would be able to: Understand the various physical phenomena & their real life applications. Learn about the wave optics and holography. Get knowledge about the basics of Lasers. Learn about the fiber optics & LED. 						
COURSE SYLLABUS							
Unit No.		Content of Each Unit			Ηοι	urs of Each Unit	

	An overview of Geometrical and Wave Optics:				
	An overview of Geometrical and wave Optics:				
1	Laws of Reflection, Refraction, Total Internal Reflection;	15			
	Ideas of Interference, Diffraction, Polarization, Dispersion.				
	Fresnel Relations:				
	Freshei Kelations:				
2	Conductors, Thin Films: Reflection Model, Matrix	15			
	Formalism, Coating Design, Fourier Optics: Wave				
	Propagation, Fraunhofer Diffraction, Fresnel Diffraction,				
	Spatial Filtering, Holography and Holograms.				
	Coherence, Interference and Visibility, Laser Physics:				
	Overview, Gain Saturation, Light-Atom Interactions, Optical				
3	Gainand Pumping Schemes, Output Characteristics, Light	15			
	Shifts and Optical Forces, Atom-Photon interactions.				
	Fiber Optics:				
4	Mode Analysis, Single mode and multimode optical fiber,	15			
	Loss and Dispersion, Photonics Band-gap Crystals, Liquid				
	crystals, Introduction of LED.				
	TEXT BOOKS				
1. 1. A. E. S	iegman, Lasers, University Science Book, USA, Revised Edition,	1986.			
	vles, Introduction to Modern Optics, Dover Publication, USA, 2 nd				
3. J. T. Verdeyen , Laser Electronics, Prentice-Hall, India, New Delhi, 3 rd Edition, 1995.					
	, Optics, Addison Wesley, USA, 4 th Edition, 2001. Introduction to Optics, Pearson UK, 3 rd Edition, 2006.				
	Saleh and M. C. Teich, Fundamentals of Photonics, Wiley, United	States 2 nd Edition			
2012.		States, 2 Edition,			
7. A. Ghata	k, Optics, Tata McGraw-Hill, New Delhi, 6 th Edition, 2017.				

Environmental Physics

Scheme Version : 2021-22	Name of the subject: Environment alPhysics	L	T	Р	С	Semester: VII/VIII	Contact Hours per Week: 3+1 Total Hours:	
		3	1	0	4		45+15	
Subject Code: SBS PHY 03 802 GE 3104	Applicable toPrograms: Integrated	Evaluatio n (Total	CIE	30 Marks	Exam hours	ination Duration: 3		
802 GE 5104	B.Sc. M.Sc.	Marks :100)	TEE	70 Marks		erequisite of Course: +2with Science		
Course	This course aims to introduce students to the application of core physical concepts							
Descriptio	of the Earth system, with special focus on: atmospheric radiation, greenhouse							
n	gases, pollution, and climate change. This course will demonstrate how physics is							
	fundamental to understand natural and human influences on climate and							
Course	atmospheric composition.							
Objectiv	• To understand the broad scope of problems to which the principles of environmental physics can be applied and to appreciate the commonalities							
e	that exist among widely varying systems;							
	 To develop problem solving abilities and a critical, practical awareness of global environmental change. 							
Course	On completion of the course, student would be able:							
Outcome	• To understand the concepts like energy transformations and various forms of energy climate change and its effect on living beings							
S	 forms of energy, climate change and its effect on living beings To understand the concepts like thermodynamics and its applications to 							
	various energy transformation processes.							
	• To develop an awareness of climate change and its effects							
• To develop an awareness of different fossil fuels and their alternatives								
COURSE SYLLABUS								
Unit No.		Content of l		~		Hours o	f Each Unit	
		Unit						

	Introduction to Energy: Importance of energy in science and society. Types of energy (mechanical, heat, chemical, nuclear, electrical). Law of				
1	conservation of energy. Energy transformations. Mechanical energy: force, work, kinetic and potential energy, PE diagrams, conservation of mechanical energy, bound systems. Electricity	15			
	Basics.				
	Heat Energy and Kinetic Theory				
	Heat and Tem:perature. Internal Energy, Specific Heat. Ideal				
	gas equation. Kinetic theory interpretation of pressure and				
2	temperature. Work, heat, and the first law of thermodynamics.	15			
2	Adiabatic lapse rate. Radiant energy. Blackbody radiation.Heat	15			
	engines and the second law of thermodynamics. TheCarnot				
	cycle. Applications of the second law to various energy				
	transformation processes: heat pumps and refrigerators; different engine cycles. Entropy and disorder.				
	Energy and Climate Change:				
	Energy balance of the Earth. Greenhouse effect. Climate				
3	feedbacks (water, clouds, ice albedo). Global Climate Models.	15			
	Evidence for climate change. Paleo-climate. Climate change				
	impacts. Climate change mitigation. Target CO2 levels.				
	Energy Source [Course Outcome(s):				
	Chemical energy. Energy in biology, photosynthesis,				
	respiration. Energy use in the human body, energy content of				
4	food. Fossil fuels and their origin (coal, oil, natural gas).				
	Problems with fossil fuels, greenhouse pollution, peak oil.				
	Alternatives to fossil fuels. Alternative energy resource: Wind energy, energy from water on land, ocean energy. Biomass and				
	other sources.				
	TEXT BOOKS				
1.	Sol Wieder, An Introduction of Solar Energy for scientists and Eng	ineers. John			
	Wiley, UnitedStates, 1st Edition, 1982.				
2.	J.T. Widell and J. Weir , Renewable Energy Resources, Elbs, 1st E	dition 1988			
3.					
0.	Publishers, NewDelhi, 1st Edition, 1992.	oons, rinea			
4	 Landau & Lifshitz, Fluid Mechanics, Pergamon Press, UK, 2nd Edition, 2000. 				
	 Egbert Boeker & Rienk Van Groundelle, Environmental Physics, John Wiley, 				
	United States, 2nd Edition, 2000.	, , , <i>,</i> ,			
6.					
U.	2002.				
7.	C. W. Rose, An Introduction to the Environmental Physics of Soil, Water and				
	Watersheds, Cambridge University Press, 1st Edition, 2004.				
8.	R. A. Hinrichs and M. Kleinbach, Energy, Its Use and the Environ	ment, Brooks Cole,			
	Stanford				

- 9. University Press, 4th Edition, 2005.
- **10. P. Hughes**, **N. J. Mason**, Introduction to Environmental Physics: Planet Earth, Life and Climate, Taylor & Francis, France, 1st Edition, 2005.
- **11. J. Monteith** and **M. Unsworth**, Principles of Environmental Physics: Plants, Animals and theAtmosphere, Elsevier, 4th Edition, Europe, 2013.

K.L. Kumar, Engineering Fluid Mechanics, S. Chand, New Delhi, 4th Edition, 2016

8. Teaching-Learning Process

- Lectures
- Discussions
- Simulations
- Role Playing
- Participative Learning
- Interactive Sessions
- Seminars
- Research-based Learning/Dissertation or Project Work
- Technology-embedded Learning

9. Implementation of Blended Learning

Blended Learning is a pedagogical approach that combines face to-face classroom methods with computermediated activities in the process of teaching and learning. It implies nice blend of face-to-face and online activities to make the learning processes more interesting and engaging. It focuses on integration of traditional classroom activities and innovative ICT-enabled strategies. It emphasises student-centric learning environment where the teacher is the facilitator for productive and measurable learning outcomes. It optimises and compliments the face to face learning, giving ample freedom and flexibility to the students and teachers to access and explore the wide range of open-access sources such as video lectures, podcasts, recordings and articles through digital platforms. It gives freedom and autonomy to the teachers in selection of appropriate digital platforms, resources and time-slots to complement and supplement face to face learning. The Blended Learning doesn't undermine the role of the teacher, rather it gives him/her an opportunity to explore the unexplored in accordance with the requirements of the curriculum.

Key features of Blended Learning

- **Student-Centric Pedagogical Approach** focusing on flexibility in timing, quality content, needs and interests of students and freedom to study through the mode of his/her choice;
- Freedom to Select variety of mediums and techniques;
- Increased student engagement in learning;
- Enhanced teacher and student interaction;
- Improved student learning outcomes;
- More flexible teaching and learning environment;
- More responsive for self and continuous learning;
- Better opportunities for experiential learning;
- Increased learning skills;
- Greater access to information, improved satisfaction and learning outcomes.

Note: Resolution no (c) as per minutes circulated by VC office: It was resolved that Blended Learning with 40% component of online teaching and 60% face to face classes for each programme, be adopted.

Note: MOOC courses (SWAYAM) having similarity more than 75% with the core courses may be offered to the students. For SEC/GEC/AECC/DSEC courses, the students may opt from the MOOC courses provided these courses are not in the list of core courses and students have not studied similar courses earlier. Since, the list of MOOC courses keeps changing, the departmental committee is authorized to finalize the list of MOOC courses for each semester based on the above criteria.

10. Assessment and Evaluation

- The question paper for End Semester examination may contain up to 40% of numericals.
- Continuous Comprehensive Evaluation at regular after achievement of each Course-level learning outcome
- Formative Assessment on the basis of activities of a learner throughout the programme instead of onetime assessment
- Oral Examinations to test presentation and communication skills
- Open Book Examination for better understanding and application of the knowledge acquired
- Group Examinations on Problem solving exercises
- Seminar Presentations
- Review of Literature
- Collaborative Assignments

11. Keywords

- LOCF
- NEP-2020
- Blended Learning
- Face to face (F to F) Learning
- Programme Outcomes
- Programme Specific Outcomes
- Course-level Learning Outcomes
- Graduate Attributes
- Learning Outcome Index
- Formative Assessment and Evaluation
- Comprehensive and Continuous Evaluation

12. References

- National Education Policy-2020. https://www.education.gov.in/sites/upload_files/mhrd/files/NEP_Final_English_0.pdf
- The draft subject specific LOCF templates available on UGC website. https://www.ugc.ac.in/ugc_notices.aspx?id=MjY5OQ
- Draft Blended Mode of Teaching and Learning: Concept Note available on UGC website. https://www.ugc.ac.in/pdfnews/6100340_Concept-Note-Blended-Mode-of-Teaching-and-Learning.pdf
- Learning Outcomes based Curriculum Framework (LOCF) for Undergraduate Programme B.Sc. (Physics) 2019 <u>https://www.ugc.ac.in/pdfnews/1884134_LOCF-Final_Physics-report.pdf</u>